Problem 9.34

y
P ) ?r(z,t] = Eif[:i{-hz—wﬂ % 1?!{3'.-'.) b E[]_E},gi[kﬁv—w-tjj,
En(z. I] == Engt{-—ku_u!.} %, Bplz,t)= _ULLEHef{—g,:_M} §.

D<cz<d E,(z,t) = Beltkar=wt)z B (z,8) = J_zérﬂiikgg_ui}?
z : = = i - = . .
Eifz,t) = Biefl-bai=wtl g, By(2,1) = — L Bell-hi-vtl g,

e>d: { Brizt) = Brehi-tlg, Br(zt) = LBreilks-vtlg
Boundary conditions: EllI = E.ﬂ, BP = BH, at each boundary (assuming py = jts = p3 = pig):
EJ“‘Eﬂ ‘:.E_-‘f-'f‘E_-'ﬁ
=:

ta

- Ete=tp g B Bl B0, e 6
Uy L a L)
Ereikgd + Eje—ikgd = ETEIk_qd;

z=d:

i.E:,e""‘?“ - -I—Ele"'*?“‘ = lETe""“‘* = E.e'*d _ Bem%d = o et where o = vy /vs.
U U Uy
vy vy v 1 - 1

~ We have here four equations; the problem is to eliminate En, E,, and Ej, to obtain a single equation for
Eq in terms of Ey. } - g i

Add the first two to eliminate Eg : 2E; = (1+8)E, + (1 - B)E;

Add the last two to eliminate £ : 2E. e*1d = (1 + a) Epei*sd;

Subtract the last two to eliminate E, : 2Eje %4 = (1 — a)ET ¢34,
Plug the last two of these into the first:

2E,

(14 B)Ze"9(1 + @) Brest + (1 ) ;e 9(1 - @) Bres?
[(14+a)(1 + e~ + (1 - a)(1 = B)e*»¥] Epeterd

[(1 4 aB) (e*24 4 2} 4 (a + B) (e — g*F2d)] Epethad
= 2[(1 + aB) cos(kzd) — i(a + B) sin(ked)] Ere™ .

4E;

Il



t:arng% vy (mq) |,E:7T|2 - u_;IE_'*rli a Jlg|:r';'r'i"|z
|Ef2  vs |E]?

Now the transmission coefficient is " = 2= = 50
wia £l v\ poe | Er|?

F 2
UIBIE _ 1 1L o oB) cos(kad) — i(a + B) sin(kad)] e+

= . =
T T BB a2

i ﬁ [(1+ @B)? cos® (kad) + (2 + B8)? sin® (kad)] . But cos®(ked) = 1 — sin® (kod).
s EijT,ﬂ [(1+af) + (a* + 208 + §% — 1 - 208 — ?B*) sin® (kyd)]
= ﬁ [(1+ @By — (1 —a?)(1 - A2)sin® (kod)] .
*
But n, = £, ngzi, n.;;:i, mt}::E1 :E.
™ Vg Uz Tig mny
= 1 [{n e }I 4+ {ﬂf T ﬂ%”“% S ”E) sinzl:.fr. tf}
= | dpghig [ n e B

Problem 9.35
T=1=sinkd =0= kd = 0,7 2r.... The minimum (nonzero) thickness is d = a/k. But k =w/v =
dnvfv = 2menfe, and n = y/eufegpg (Eg. 9.69), where (presumably) u = pg. So n = y/e/ep = /€., and hence

me « 3 x 108
d= g - =949%x10"%m, o -Em
rvyfer 2weyfer 2(10 x 10%)/25 i

Problem 9.36
From Eq. 9.199,
-1 _ 1 2, [(16/9) = (9/4)][1 - (9/4)] . »
T = T {[{4;3)+1] + o74) sin {&udf?c}}

_ 3 [49  (-17/36)(-5/4) . _ 4 2
= % [g ©/4) sm*(:udfzc}] == PO (3wd/2¢).

P 48
49 + (85/36) sin® (3wd/2¢)

Since sin’(3wd/2¢) ranges from 0 to 1, Timin = =i e 0.935; | Trmax = :‘—; = Not much

49 + (85/36)
variation, and the transmission is good (over 90%) for all frequencies. Since Eq. 9.199 is unchanged when you

gwitch 1 and 3, the transmission is the same either direction, and the ‘ fish sees you just as well as you see it.

Problem 10.1
oL Py, 8 v i, 1
2 - ——]| 2 _ e = L —— 2 — Ll = == —
OV + 3 vV Koo 577 +3t[v ﬁ-}‘f'ﬂﬂﬁua!: vv+at{v A) Eup.\r"
2
PA-VL = V*A- m%ﬁ -V (v-A+ MEQ%) =—fipd. v

Problem 10.3

Be-wv-22 1 2el povwsa=[0]

&t 4meg 3

oy 1
This is a funny set of potentials for a Istationmy point charge | g at the arigin. (V' = = E, A =0 would, of

course, be the customary choice.) Evidently lp =gé®(r); J = D.l




Problem 10.5

1 1
V= u—(—i?)= L 2 A’=A+v}.=-L“—’f+[-ﬁ~—Eugt) (—— ):

dt dwen 1 dmeg T dmreg 7 r?

This gauge function transforms the “funny” potentials of Prob. 10.3 into the “ordinary” potentials of a sta-
tionary point charge.

Problem 10.7 5V av
Suppose V-A # ~Hoto - (Let V-A + jgeg— = P—some known function.} We want to pick X such

it
that A’ and V' (Eq. 10.7) do cbey V:A' = —msq'a;:
av! av %X
(] i I 2 e S — 2
?A+m¢nm ?A+Vk+m¢nm mmmz &+ O

This will be zero provided we pick for A the solution to 0%A = —®, which by hypothesis (and in fact) we know
how to solve.

We could always find a gauge in which V' = 0, simply by picking A = _ﬂ: Vdt'. We cannot in general pick
A = 0—this would make B = 0. [Finding such a gauge function would amount to expressing A as — V), and
we know that vector functions connot in general be written as gradients—only if they happen to have curl
zero, which A (ordinarily) does not ]

Problem 10.9
(a) As in Ex. 10.2,fort <rfe, A=0;fort > r/c,

Vi3 et Rt ety =2

Alrd) = ﬁﬂ)z {7 Me—vrreT/d) ke ), f I [ dz
e = (4 VTR T2 ViT+2 ¢

o

(%ﬁ )[S]n (d.{...{:ﬂﬂ_ri)_% (ct]ﬁ—rﬂ]. Accordingly,
T
A k et + +f(et)* —r*
Elr,t) = -%—t -%i{fn(;%#r)jL

¢ i (1) e 1 2% 1 2 }
ct+ (et —r2 ) \r 2 /lct?—+2) 2 flct)?=+?
_p.;ki i et + /(ct)? — r? g ol - et
2T r Vet =17 flet)? — 12

i 2 _ gl
—&kln (Ct+ et er ) 7 {or zero, for t < rfc).

2 T

B(r, 1)

[r;,w;;x__r_&{_ﬂ_ m] _1_ = (g

ok

—et? r o pok (=R +r%) o | pok e g
i }ﬁ_ ?Wrcm¢" gare Y T8

r/(et)? =12 e\f(et)? —r?

J;r
_ ek
=5 2r cg+ﬁm ré 2 \f{et)? —r?

(h) A(r,t) = -:—u- ﬁf Mdz. But 4 = /7% + 22, so the integrand is even in z:
r

Ty

A(r,t) = (%i)zfum &t —+/c) .,

& L = g



Now z = 22 —r? =&»-:ia':=51.4’,;5____[_2 =JT__EF§' and z=0=e=7, =00 =>4 =00. S
At =521 [ 25 (e-2) ;frg_
1583
Now d (t —2/e) = ef(z — ef) (Ex. 1.15); therefore A = ﬁ;% icfrm 5[::2-_{::} tn, S0
Alr,t) “;:"" \/[.:T}E*—_rf & (or zero, if ct < r);
E(r,t) = _% o, __P;li:c (___;_) [l:m}fiz:_gfﬁ §= 21?[(‘::‘;3‘3::3:2]3!2 2| (or zero, for t < r/e);
B(r,t) = - 3;: 3 ﬁp;t:rnc (ﬁ%) [{d}a__gtijaﬁ S EW[(;-;‘:{“?ZFH ¢@| (or zero, for t < r/c).

Problem 10.16
First calculate ty: ty =t — r —w(t )| fe =

~elt, =t =z — P+ 2t 1) + 2=/ 02 + 72 '
( .J Vv ( ) 4 .
2 — 26t + 1® + 2xct, — 2xet + 27 = b + P I wir) H
et (w —ct) + (z* — 2zct + c%’] = ’ I A
B — (z—ct)?
2 —ct) =8 - (z—ct)? = —_—
ete{z —ct) = b° — (2 — ct)®, or b, elz — o)
Nuwl-’{z!]—#q—c andac—a-v=2(c—v); 2=t —1,)
T drren (se— 40 V) i W o

1 1 0t = &t, _ e, ( }_citr-F-c{a:—ci)—c?tr_ elz —et)
u_im AL -tz e tlz-d) T e +lz—ob) et +(z—ct)
il _elt—tdelz—ct) At -t.)(z—ct) _ B —(z—et)? . _rbﬁ+{r-ct]2_
K =) — GiG-m e e e
_2tz—ct) -V +(z—ct)} (z—c)z+ad)-b (22— )
e 2e(x — ct) - 2¢(zx — ct) T 2e(z—ct) S
1 _[b2+(z—ct)1 1 2¢(z — ct) L, B+ (2 — et)?
re—a-v | 2Azr—ct) | Flz—ct) [2et{z—ct) b2+ (z—ct))]  clz—ect) [2ct(z —ct) — b2 + (2 — ct)?]

The term in square brackets simplifies to (2ct +z — ct)(z — o) = b* = (z +ct)(z — ct) = b* = 2% = *t* = b7

_q B+ (z — et)?
Vet = o C—aW e — e —0)
Meanwhile
R el darg 2ty ) BP—-(r—ct)®] 2z—ct) ¢ b + (z —et)® n
T & aet(z—ct)ET T | 2e(z—ct) | B+ (z —et)? dmep (7 — ct)(2? — B2 — B?)
q b2 — (z —ct)? ¥

drepe (x — et)(z? — 21 — b2) i




Problem 10.18

‘i'.\'l'fn (» .:'}3 [[cz = uilu +4 X {'I.'I b4 l]] Here v

v%, a = g¥, and, for points to the right, 4 = X. So u M
(c—v)%, uxa=0, and4 u=4(e—v). ’

Lo g * - e = 1(‘-“4““]{3“”}? q c+uy
s clmne“l_'c-uﬁ{c el dmega? (e —v) A= 411'65&: e—u x;
B = ZixBE=0 ged

For field points to the left, A= —X and u= —(c+v) %, 50 4-u=2{c+v), and

___1 B e 0
E= 411-594_3{:+u}“{c2 v)e+v)k = e (H_u) % B=0.
Problem 10.23
Using Product Rule #5, Eq. 10.43 =
vV.A = -iﬂqr:\hv[(ijzﬂ—-r-\f}g+|:{,‘2—[r2]{f‘2 _C‘Jiz)]—lh
v
= P::cv : { =2 [(cPt —x-¥)* + (c? — *)(r* - %)) R [(FPt—r-v)* + (& —o*)(r? - L"‘]f"']]}
= ";:‘ [(t—rv)? 4 (& = 0?)(r? = 28] v <2t = V) V(r-v) + (¢* — ")V (2)} .
Product Rule #4 =
Vir:v) = vx[{Vxr)+(v.-Vir, but Vxr=10,
(v . Wir = (u,,sir-{-v g +ua— s ) (zR+yP+28)=v, X+v, §+v.2=v, and
VirY) = Vir-r)=2rx (Vxr)+2(r-V)r=2r. So
V.A = —% [(c*t —r-v)* + (& —v*)(r® - 2¢%)] . [-2(c®t —r - v)v + (¢® — v?)2r]
= % [(e®t —x v} 4 (" = v¥)(r? - cgt?}}_g‘;z {(t—rv)v® - (& —v%)(r-v)}.
But the term in curly brackets is : ¢*tv® — v (r-v) — X (r-v) + v*(r -v'} =c (vt —rov).
_ hoge? (vt —r-v)
47 (2t —r-v)? + (2 —02)(r2 - ceﬂ:a}]ﬂ‘z
Meanwhile, from Eq. 10.42,
—otg— = —pge -1—qr [(cgt —rv)? + (S - o?)(r? — Y] = 5
LEFT Yirey
) [{fiﬂﬂ — v}z i (EE A& ,”2:][:?,2 4 c‘!t2]]
_ ﬂaf}[{ T 42 1 aag—idf2 R | R
= At—r v) +(& =) - )] T [2("t — - v)e? + (¢f — v?)(—2c%)]
B e 2
_pqr;{:" (Pt —r-v —ct +v%1) = =V-A./
A (2t =1 v)E + (62 —02)(r2 — 222)] /
Problem 10.24 i t)
_ Qg 1 = = 1
{a) | F 3= s —_{52 T8 "=| :
(This is just Coulomb’s law, since g, is at rest,)
g1

- 1 e [1 ., _ -
(B} = A8 f . —dt = ;’:{; [Eban T{d{b}l

dreg J_oo (0% + E217)

et 1F & 20w

= [tan™! (c0) — tan™! (—o0)]

drepbe

2




— . f2 1=y,
(c) From Prob. 1018, E = — 72— (cw) %. Here r

and v are to be evaluated at the retarded time {., which is

given by e(t —t,) = z(t,) = VB + %2 = 2 = 2ett, + 72 =
242 _ 2

S Note: As we found in Prob. 10.15,

ga first “comes into view” (for gy ) at time ¢ = 0. Before that it

can exert no force on gy, and there is no retarded time. From

the graph of ¢, versus { we see that ¢, ranges all the way from
—oo to oo while ¢ > 0.

b+t >t =

2 -2+ v+ 1 2% At
) =clt—t:) = e = (for t > 0). w(t)= Sh e e 50
eH? — b? 2et A2 — b?
u(l,) = ( o ) (bz e sz!) =r (m) (for ¢ > 0). Therefore
e—o (PP +¥¥)-(F-8) W ¥ . om 422 b
cFv - [@BTP) T (@F—) 3B ~ap Wrt> 0 EB=-p e evaa
{ 0, b < O
F) = g 48
_K\Enl:bz-l-[!:ﬁ:]z % t>0
e W@ [T 1 : ;
(dh = 4weu4b j; T 207 dt. The integral is
1 1 1 fe* 1 R 1 1 swe T
« | w8 ool + | were] - G) -
W
fo- 1A= dmen be'

(e) F; # —F2, so Newton’s third law is nof ocbeyed. On the other hand, I3 = —/a in this instance, which
suggests that the net momentum delivered from (1) to (2) is equal and opposite to the net momentum delivered
from (2) to (1), and hence that the total mechanical momentum is conserved. (In general, the fields might
carry off some momentum, leaving the mechanical momentum altered; but that doesn't happen in the present

o)



Problem 10.25
$ = —(E x B); B = +(v x E) (Eq. 10.69). E
F’u | =

sas:Fﬁ?mx(wE;]zfo[E*v_(v-E}E]. Wit %

The power crossing the plane is P = [ §-da,

192 CHAPTER 10. POTENTIALS AND FIELDS

and da = 2nrdrx (see diagram). So

P o= cuf(Ez'u - Eiv}:!:rrr dr; E. = Ecos8, so E* — E§ = E?sin®@.

2

o 8.2 i R s 1
£ 'ZfrfﬂUfE sin®f@rdr. From Eq. 1068, E = == ‘Iﬁ = [1 o/ o 9]3“ where 1= —— IT'I,"C*
S oo (]
= ?‘-TFD*U( g ) izf AL = dr. Nc)wr:utan&:%-dr:u;zdﬂ;izcﬂ.
dmen /) v Jo RY [1 - (v/c)?sin® 8] cos® f n a

2 a2 .| ;
el 'f : Sin 06080 9. Lietu=ain?0, so du=2sinfieostdd,
i}

2 dmeg a? 1 - (v/e)¥sin® ]

v 1 B gt vi? N = vg?
16regat Jy [1 = (v/e)?u)’ 16megni~t \ 2 32mega?”

Problem 11.3

P = IR = qiuw?sin*(wt)R (Eq. 11.15) = (P) = lqZw?R. Equate this to Eq. 11.22:
1, 5,  poggdie? _ pod?w® . _ 2me
‘ZQSWR_ fire T ke | RO

- e 5 = ruoe () = rtoe 16710 0109 (5) = 00 (5) 0= [osiaapn
B=o—s _3;@,{:(*) = 3mr x 1073 x 10%) (5 | =80a" () 0=|789.6(d/1) Q.

195

196 CHAPTER 11. RADIATION

For the wires in an ordinary radio, with d = 5 x 10~ m and (say) A = 10% m, & = 790(5 x 10~%)? = 2x 10~%(),
which is negligible compared to the Ohmic resistance,




Problem 11.5
Go back to Eq. 11.33:

= torto (308Y { L cosuts —r/el] ~ Leinfut ~r/c)] } 6.
Since V' = 0 here,
R (“:B) { (w)sinfw(t - r/e)] - Lwcoslut - ch}]} é
= |l (£2E) { S sinfutt = /)] + 2 coxfult ~ /) | & ‘
B o= VxA=—— O (4,sind) - 1- - (rdg) 8
yomo [ 1 2sinfeoad

4

{

rsind

—— cosfw(t — r/c)] .

[ cosfw(t —r/fe)] — — sm[u(ﬁ —r/e)] ]
- sm[u(t— rfe)] — — (——) cosfw(t — r;‘c)]] }

sin ! 1
. g [
aFig { 2cosf
_ 4 7
B sind
£ {

[ cosfw(t — r/c)] - fsm{w(t " rfc}]}

—% coslw(t — rfe)] + = silllu(t —rfe)]

+ (%)chs[w(s - 'r,fcjl]] E'F].

These are precisely the fields we studied in Prob. 9.33, with 4 —

the solution to that problem) is

pomow®
dre

. The Poynting vector (quoting

pomaw® (sin@Y [2cosf c? , e 4 ;o "
s T I =
6tE \ 3 iﬁ - 1 3,7 ) sinucosu+ — (cos® u —sin®u) | @
sinﬂ[( wzra)smucnsu+—c{:ﬁ u-l-—u{sm u_mgiu}]r},
where u = —w(t — r/e). The intensity is | {8) = ot s 6 i, | the same as Eqg, 11.39
- ' F T 32r2d 2 aleiii
Problem 11.14
g —-ml.-E =y = BTN At the beginning (ro = 0.5A)
dreprt = N dreamr . § (o =T9ah
-192 -1/2
) (1.6%107) 1 _ 00075,
¢ = |2m(885 x 10-17)(9.11 x 10-91)(5 x 10-11) Ix10°

and when the radius is one hundredth of this v/c is only 10 times greater (0.075), so for most of the trip the

veloeity is safely nonrelativistic.
Hod

R
Grre (7) -
where [7 is the (total) energy of the electron:

2
JFrom the Larmor formula, P = Hod” (
fmre

1

ety
ey mr?

2

2
) {(since a = v?/r), and P = —dU//dt,

= =Yoo g1 1 g L veh . . Lo
U—Uk’"-'-apnt_Zmu dreg r 2 (411'(0 T dreg v Bmeg T
di/ 1 g*dr ¢ 1 £\ dr.. 3 @ \'1
o Tt Bregridt © bmege® \dmegmr? ) BaE- AR dt ~  3c \2megme) r?’ or
2 2 0 2
. . 2
dt = -3¢ (EN;zmc) ridr=1t=-3¢c (Zﬂﬂ?mr) f ridr =|e ( :r:;mc‘) e
2w(8.85 x 10~12 9.11 x 10-31)(3 = 10% - =
= (3x10% [ (l.;(x To-10y2 ( J] (5 x 10712 —m (Not very long!)

Duahlam. 11 1E



Problem 11.17

2

(a) To counteract the radiation reaction (Eq. 11.80), you must exert a force I', = —‘En:: a.

For circular motion, r(t) = R [cos(wt) X + sin(wt) ¥], v(t) =1 = Rw[—sin(wt) X + cos{wt) ¥];
a(t) = v = —Ruw? [cos(wt) % + sin(wt) ¥] = —wr; a = —w?t = —w’v. S0 |F, = 'I;D:c

=F,-v= "‘;0: 2y%.| This is the power you must supply.
c

Meanwhile, the power radiated is (Eq. 11.70) P = ‘uﬂ;w and a® = wir? = W'R? = W, so
ﬁ;‘fz 2y?, and the two expressions agree.
(b) For simple harmonic motion, r(t) = Acos(wt)é; v =F = —Awsin(wt)%; a = v = —Aw cos(wt) 2 =
Ty A= —u'F = —w’v. S0 |F,= E'Ef:wi!v; B= "éfc »°. | But this time a? = w'r? = W1 A% cos?(wt),

whereas w?v? = wtA? sin®(wt), so

Hod® 42 2 Ho@' 4 2. 32
Py = —uwi"A%cos®(ut) £ F, = ' A% gin® (wt);
rad 6me { )?'E e - ( \1'
the power you deliver is not equal to the power radiated. However, since the time averages of sin®(wt) and
cos® (wt) are equal (to wit: 1/2), over a full cyele the energy radiated is the same as the energy input. (In the
mean time energy is evidently being stored temporarily in the nearby fields.)

(c) In free fall, v(1) = %gtzf; v=gt¥:a=g¥ a=0 So the radiation reaction is zerg, and

2
hence But there is radiation: | Fag = F;Tc g*. | Evidently energy is being continuously extracted from

the nearby fields. This paradox persists even in the ezxact solution (where we do nof assume v < ¢, as in the
Larmor formula and the Abraham-Lorentz formula)—see Prob. 11.31.

Problem 11.21 E

{a) This is an oscillating electric dipole, with amplitude pg = gd and frequency w = /k/m. The (averaged)

,ugpﬁw‘) sin® @

39120 . ', so the power per unit area of floor is

Poynting vector is given by Eq. 11.21: (8) = (

4 a
Ir = (8)-2= (““”3“’ ) et L T S ) g 0 O U G

32r%¢ r? r r
_ | {og?dut R*h
- 32r2e ) (R? + h2)5/%
&l i 2R A -
dn =" 4R [{R?+ Wﬂ] =0= miwpr i@ rmyn -0

(R? + W) — gﬁz YT %R* = | B.= faT3h, | for maximism itensity:
{b)

n o _ po(qd)*w? = 7 _ERL
P = fff(mda._fr,(mzwadﬂ_zn (73%% hfo s dR. Letz= R®:

&—Ldﬁ—l/ ' . 1D@TGR 2
ﬁ (R2+h2)5/2 7 2 fy (z+h2)%2 "  2h T(5/2)  3h°

o (o’ Pt L 2| pegdu!
32n2¢c 3h 24me

which should be (and is) half the total radiated power (Eq. 11.22)—the rest hits the ceiling, of course.

{L} Thc amplitude is zq(t), so I/ = Lk} is the energy, at time ¢, and dU/dt = —2P is the power radiated:

4 d :...l* 2 _ e
_k_ =) = - :cqzz‘%:’ EE(”‘!}] =‘p§ﬁk§ (23) = —nzi = 25 = d’e™" or zo(t) = de™"/2.

. 2 8 12?rkc e 12rem?
TR pogkt | pogtk




Problem 11.22

2w-l 5il:l2 g L .
(a) From Eq. 11.39, (S) = (%) —5— & Heresinf =

Rir, r = VvR*+ 12, and the total radiated power (E- h r

2
q. 1140) is P = ‘u;];‘lu:". So the intensity is I(R) =
e -

12P\ R*  [3p R
32w ) (R* + h?)? | 8« (R? + K3)*
{b) The intensity directly helow the antenna (R = 0) would (ideally) have been zero. The engineer should
have measured it at the position of maximum intensity:

2
&t =L 2R]=3PL(R“+!:’—2R3)=U=&

2R
4B &n [{R2+h2}"' T (R? + h2)8 8n (R? + h2)?

209

3Pk ap

At this location the intensity is I(h) = 5 @) | 3o

_ 3(35 x 10°)
() e~ S20C00

=0.026W/m® = |2.6yW/cm®.| [Yes, KRUD is in compliance.




