Problem 7.1
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(a) Let @ be the charge on the inner shell. Then E = %f‘ in the space between them, and (V, — V;) =

- Jy Bl =~ e = 1 (- )

_ _ _ Q oameg(Vo—Wy) | (Va—Va)
I_‘/J-da_g./E-da_aa_6—07(1/(1_1/%) = J‘ﬂ—gi{l/a—l/b)'

Vo—Vp | 1 1 4
G —ﬁ(a‘a)-

(e) For large b (b > a), the second term is negligible, and R = 1/47oa. Essentially all of the resistance is in
the region right around the inner sphere. Successive shells, as you go out, contribute less and less, because the

2 1

i i ; - - :
cross-sectional area (4mr®) gets larger and larger. For the two submerged spheres, R = — = 5— (one R as

the current leaves the first, one R as it converges on the second). Therefore I =V /R =
Problem 7.2
(a) V = Q/C = IR. Because positive I means the charge on the capacitor is decreasing,

d ; )
?"‘f =—I= —Rl—CQ, so Q(t) = Que ¥R, But Qo = Q(0) = CVy, so| Q(t) = CVpe ¥/ O,

Hence I(t) = —% = C%%e‘”ﬂa = %e_tmc.

oa ) o
(b) W = | $CV?.| The energy delivered to the resistor is Pdt = / PRdt = %’ e 2/RC G —
Jo
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2 1 0
VD (_ RC E—Qf/RC) - %Civz]ﬁ v

R 2
V—QC—!—H{; This ti sitive [ 5 () is increasi 'dQ—I— . CVh— Q)= B _
(c) Vo =0Q/C ; is time positive I means €} is increasing: T E{ 0 —Q) m =
_%’ﬁ = In(Q — CVy) = —%t + constant = Q(t) = CVy + ke %€ But Q(0) = 0 = k = —CVj, so
. = ; dQ 1 _ro Vo _
_ 7 (1 _ .—t/RC . L tyrC\ _| Y0 _—t/RC
Q(t}_C‘ID(l e ) It) = = CVU(RCE ) e .

: o B V& e —yrc, Vo e Y8 s TAom
(d) Energy from battery: /u Vol dt = E[; e dt = N (—RCE’ )lo = fRC- _

Since I(t) is the same as in (a), the energy delivered to the resistor is again %C-’V.}z. The final energy in

the capacitor is also %CVOQ, S0 the energy from the battery goes to the capacitor, and the other half

to the resistor.

Problem 7.8

(a) The field of long wire is B = '?—ﬁcf:, so b= /B-da = ol / 1(a ds) = Aula In (5 * &) }
2ms ; 2r J s 2T 8

dd pola d s+a ds pola 1 ds 1ds ptola’v
byf=—=— —In|— d—= - — ] =
(b) dt or dt ( s ) S e (S +adt s dt) 2rs(s +a)

The field points out of the page, so the force on a charge in the nearby side of the square is to the right. In
counterclockwise. |

the far side it’s also to the right, but here the field is weaker, so the current flows

(¢) This time the flux is constant, so
Problem 7.10

¢ =B-a= Ba®cosf
Here 8 = wt, so
£=—92 — _Ba?(—sinwt)w;

£ = Bwa?® sinwit. ‘

(view from above)




Problem 7.18

@:fB-da- Bl g g ol /s+md_§—”—”I“m—3+“-
T oms T T & !

2m s or 5
0 _dQ - d@_ p,ga
E = Roplt= h R= = ]J1(1+ /s)d
dQ = — ’”’““ SIn(l+a/s)dl = |Q= I”c'alﬂ(l+ﬂf3)

The field of the wire, at the square loop, is out of the page, and decreasing, so the field of the induced
current must point out of page, within the loop, and hence the induced current flows | counterclockwise. |
Problem 7.20

(a) From Eq. 5.38, the field (on the axis) is B = Wz so the flux through the little loop (area ma?)
|- powla®b?
of T

(b) The field (Eq. 5.86) is B = £2 % (2cosft + sin 8 8), where m = I'ma®. Integrating over the spherical “cap”
(bounded by the big loop and centered at the little loop):

2 2 7]
@:/B-da:&T—f/(Ecosﬁ)(rzsinGdadqb): ﬂ"izwf cos f'sin 8 dé
0

4n 2r
y ] 212
where r = v/b? + 22 and sinf = b/r. Evidently ® = fi‘?—"—’fﬂ- "“g g |- -2——(;;:71'—-—32-—-—;/2, the same as in (a)!!

(c) Dividing off I (®; = Myalz, & = My I1): | Mya = May = _bona’®®
: ; 2% + 2)2°
Problem '?'.4‘32
Initially, - = 192 = T = 1my? = }
new orbit, of radius r; and velomty vl

2
mvi 1 ¢Q Lo k- qQ
= B=T = =
ry  4meg .,.2 v Bt G 241760 r 2

i grg After the magnetic field is on, the electron circles in a

qvlrl B.

But ry =r+dr,so (r)"' =r~1 (14 "'r—")_I 11— "—r"), while v; = v + dv, B = dB. To first order, then,

1 1 ¢qQ dr 1 qur 1 1 ¢Q
2 - =T -T= B — -
7= Ring ¥ ( - ) - 2q(wr') dB, and hence dT 1 d Tl =y dr

Now, the induced electric field is E = ;‘ﬂf (Ex. 7.7), so "‘T =qE=1% ‘:{f, or mdv = 4-dB. The increase in
kinetic energy is therefore dT" = d(}mv?) = mvdv = %4*dB. Comparing the two expressions, I conclude that

dr =0. qed

force in the z direction (a repulsion of the plates) which reduces their (electrical) attraction but does not deliver
{horizontal) momentum to the plates.]

(ii) Meanwhile, in the space immediately above the upper plate the magnetic feld drops abruptly to
zero (as the plate moves past), inducing an electric field by Faraday's law. The magnetic field in the vicinity
of the top plate (at d(t) = dyp — uf) can be written, using Problem 1.46(h},

Bz t) = —poovfd—2)%X, = E = poovud(d — z) X

it
In the analogy at the beginning of Section 7.2.2, the Faraday-induced electric field is just like the magnetostatic
field of a surface current K = —ovu%. Referring to Eq. 5.58, then,

r Tivaw, g .

(I dropped the subscript on dp, reverting to the original notation: d is the imitial separation of the plates.)

The total impulse is thus I =1, + I, = matching the momentum initially stored in the fields,

from part (a). [I thank Michael Ligare for untangling this surprisingly subtle problem. Incidentally, there is
also “hidden momentum” in the original configuration. It is not relevant here; it is (relativistic) mechanical
momentum (see Example 12:13), and is delivered to the plates as they come together, so it does not affect the
overall conservation of momentim.]



FProblem 7.59
(a) J=0(E+v x B); J finite, ¢ = 0o =+ E + (v x B) = 0. Take the cwrl: VXE+ Vx(v x B) =0. But

g8
Faraday's law says VXE = ~F So == V(v x B). qged

(b) V:B =0= § B-da=0 for any closed surface. Apply this at time (t + dt) to the surface consisting of
S, 8, and R:

j; B{t+dt}-da+[ B{t+dt]-da—f Bt + dt) - da = 0
! i 5
(the sign change in the third term comes from switching outward da to snward da).

d = SrB{c+dej.da—j;a{fj-dufs[mzmﬂ-B{t}]-ﬁ-LB{wdﬂ-@

8B gt (fos infinitesimal dt)

,ﬂ.:{ S%.da}dt_fgg.[urdg}.[qﬂxv]m] (Figure 7.13).

Since the second term is already first order in dt, we can replace B(t +dt) by B(#) (the distinction would he
second order):

d@:d:fs-a&?—-da-dsﬁﬂ-{mxﬂ:dt{f(aa?) da — f‘\?x(\r x B) - da}

(v x B)-dl
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Problem 8.5
(a) Ex = Ey =0, E. = —o/e. Therefore
Loy =T e T =0 T =T —Sp= -2 7. (E*-lgﬂ)—‘—“sz—‘i
oy = Az = Ay = =4 zzx = dyy = 2 e 250' rx = &) " 2 -'2 _2&}.

w g2 -1 0 0
T= Der 0o -1 0 i
BN 00 #l

(b) F = ‘t;:i: -da (8 = 0, since B = 0); integrate over the zy plane: da = —dz dy £ (negative because
outward with respect to a surface enclosing the upper plate). Therefore

F 2
e /T“du ——A mdthﬂfur:epermtﬂe&mf—g=—§?i
]

[¢) =T = is the momentum in the z direction crossing a surface perpendicular to z, per unit

area, per unit time (Eq. 8.31),
(d} The recoil foree is the momentum delivered per unit time, so the force per unit area on the top plate is

f=——2%| (same as (b)).




Problem 8.11
() From Eg. 5.68 and Prob. 5.36,

re< R E=D, B=§;maﬂwi, with o =

c .
e dn*'
r>fR: B= —

i B= irﬂrf‘ﬁ{zmﬂf +5in88), with m = ;—nmuR".

ey 2

The eriergy stored in the electric field is (Ex. 2.8):

1 ¢

W = e

o Brey I
The enerpy density of the nternal magnetic field is:

1 _ 1 f2 e 4 _ pgwte? y pgerte® 4 petu B
up = EBE = m (Ef.lg _'_'l{IRj) = _'i'_"hriﬁﬂ‘ 18] H'ﬂln = ?hﬂﬂuﬁﬂ'ﬁs = E¥Pe
The energy density inthe external magnetic field is
- L gt g s Bl i 1 5
g = T T65 7F (4cos® 8 +sin® §) = ST T—Gfﬂm #+1), so

[+ T B
pgett it f - [ - : ppedu* B I ot/
it i — — o+ = — [ —— o meesrr—
ot (18)(16)=" / = d'ru [Soot’e l]smﬂdﬂﬁfﬂq‘h (18)(16)7* (3&3) (4)(2m) = nsr

2R el 1 of P
Wy = Wi +W, =MW B i 7 =5 +
I it [ 108 [2 + 1] 36T I wﬁ: i IH;H BN’CH " K {ifd 2

2
(b} Same as Prob. 8.8(a), with @ — ¢ and m — %WR‘-‘!: L=He :&:R 8.

pge? o h _ Bk (O)(m)(1.06 % 10°M) =
B T B =3 2 vR= i = Taxio i s ig-op L2 X 10 m/s

1 2] 2 fuRr\? 2 SR’ 2 (9.23 x 1010y " i

c 4 3 %108

d (2,01 % 10%)(1.6 = 10-19)2 _ _Bagx10 s
A= s % I P % 0T E X I X 07 mi| w= e o =|3.13 x 10% rad/s. |

Since wi, the speed of & point on the equator, is 300 times the speed of light, this “classical” model is clearly
Jnnrestiatie




_ Hodm {r—ds)
4 (r? 4 4 — 2rdecs §)HE°

154 CHAFPTER 8. CONSERVATION LAWS

Momentum density (Eq. 8.33):

fodedm (—d)(r x &)

p=gExB)= (1) . (r¥ 4 d? — grdcusﬁ:lsﬂ :

Angular momentum density (Eq. £.34):

. _ Hogetgmd rx(rxi) . . — 1
t={rxp)=— T )? r“[r’+|:F—B‘.rd'msﬂ]“=' Butr x(r=2) =rir fl=ri=rcosftF -8

The ¢ and y compoenents will integrate to 2ero; using (f), = cosd, we have:

tiodeqmd e @ — 1)
L = - & rPsind drdf dg.  Let u = cosé
[4r) r={r=+:r¢-wmsa}“"’ ’ R

Hoegmdd r(1-v)
Ty 2 }ff{rudl—zrdu]’“d'“k

Do the r integral first:

o

f rr _ {ru—d) S f 1 o _ousl 1
R Tl - w )R , d(1—w?) Td{1-wfd  d(1-uf) d{l-u]
Then
1 1
_ boGegmd . 1 [ (1 —4f) o Gefm _P'ui'ri'm- w\|' oot
L= bldnty L [0 = ol fHu]du (v+5) =|




Prol_lll-:m 9.7

2 & a° f 8 f f
A L R ‘f . =i’ 10 Fod oy
fa) F =T t,:}:__,_“'.o Az = pdz 2 37 Hem T
z i —aurt T -r'u.'Fd‘jF- s b I.':' e - R & '!F‘ st
{b) Let f(z,t} = F{z)e™™"*; then T'e P = u(—w)Fe + y{—iw) Fe =
T{fii = —w(pw + i) F, d:—{: —k*F, where k% = —(,u,w +i5). Solution : F(z) = Ae'™* 4 Be—ib=,
e 24

N 3 Lt 3
Resolve k into its real and imaginary parts: k= k+ix = £* = k? — & + 24k = ?[,uw + ).

9 L ' a2 1 5
D= ol = s K P R (ﬂ) = o ror k? — k' JT) = (wy/2T) =0 =

7 26T T k3 E 3
= % l i (T + /([ T)* + dwy /2T ] [l:l: W 1+ (/) ] But k is real, so k¥ is positive, so
i f B 2 o SR B St
we need the plus sign: £ =w 57 \/_+ 1+ ‘*.rj';m:) K= 507 FTa [ L+ {7/ ) }
Plugging this in, F = Agilhtinlz o pe—tibtinls — pe—kzothz 4 Berie=h: Byt the B term gives an expo-

nentially inereasing function, which we don't want (I assume the waves are propagating in the +z direction),
so 3 = 0. and the solution is | f{z,ﬂ = Aenzghthi—ut) {The actual displacement of the string is the real part

of this, of course. )
{¢) The wave is attenuated by the factor €7, which becomes 1/e when

7= b '”f_ﬁﬁ.ri\/ 1+ /1 + (+/uw)?; | this is the characteristic penetration depth.
it

[

’C’| + k+ixg

. % _ el 2 b S - SN
(ﬁ) :(}“_i )(fgl iL_|_u,) (ky — k)" + & s (k1 — k) I-h..‘!.!F

- ke —k—igY -
(d) This is the same as before, except that ky = & +ik. From Eq. .29, Ag = (1—-—) Ags

4 ki+k+in) \ki+k (ky + £)2 + k2 (ki + &) + w2
(where k; = w/v; = wy/ 1 /T, while k and & are defined in part b). Meanwhile
b=k —in) _ (s — ki) krin) ()R -kt 2k [ “2kin
2

ky + k+ix (ky + k)2 + K2 = (k1 + k) + 2
Problem 9.10
P= I M =14.3 % 10"5N/m?. | For a perfect reflector the pressure is twice as great:
c  3.0=x 108

8.6 x 107%N/m®. | Atmospheric pressure is 1.03 x 10° N/m?, so the pressure of light on a reflector is

(8.6 % 1079)/(1.03 x 10°) =|8.3 x 10~ atmospheres
Problem 9.12

T;‘j = g (E;‘EJ' - %éuE‘z) -+ I}J (BiB_f -~ %ﬁuﬂi) =

With the fields in Eq. 9.48, E has only an = component, and B only a y component. So all the “off-diagonal®
(i # 7) terms are zero. As for the “diagonal” elements:

1 1 1 1 1
E::E IE "Ez) Fp— __B‘Z) - = ( Eﬂ - 2) =
" ( =g N Ho ( 2 ] ﬂnB ¢
-
2

(—cuE* + iﬁ“) =0,
1o

bz
[
I

So|T.: = —€gEs cos®(kz — wt + ) | (all other elements zero).
The momentum of these fields is in the z direction, and
it is being trunsported in the z direction, so yes, it does make
sense that T%; should be the only nonzero element in Ty;. Ac-
cording to Sect. 8.2.3, —% . da is the rate at which momentum
crosses an area da. Here we have no momentum crossing areas
oriented in the z or y direction: the momentum per unit time
per unit area flowing across a surface oriented in the z direc-
tion is —T; = u = e (Eq. 9.59), so Ap = pcAAL, and hence
Ap/At = peAd = momentum per unit time crossing area A.
Evidently ‘ momentum flux density = energy density. | +

cAt




Problem 8.16

Ef - Ej;fi{hrr_wt}?|
B, = ulED,e""”"_“‘”{—L‘ﬂsﬂ';:‘c+sin61i]; B \

1 R
Bp = EBgyetknriy, ks 5
ﬁ_ﬂ = lEﬂRei{kn'l'—ﬂl)(cusﬂl X +s5in 8, E); By l/-ﬂ’ﬁ—/’-ff’YB':

vy b -
ET = %rﬁifkr-r—wtljl By
B = ;;Eﬂr es‘{krrrvun(w cos fa X + sin fy 2); iy G}|‘®

(i) e Bt = e B4, (iii) E! = EL, B,

Boundary conditions:
(i) Bi- = B, (iv) ,—ETB'J = LB},

sin @
Low of refraction: = ; = ”E [Note: ky-r—wt=kg -r—wt=lky r—wt at 2 =0, so we can drop all
1 1

exponential factors in applying the boundary conditions.]
Boundary condition (i): 0 = 0 (trivial). Boundary condition (iii): | Eg, + Eog = Ey,.

Boundary condition (ii): —I-Eg, sinf; + -LE“ sinf; = iE—'g.,_ §ind, = By, + ‘E:DR = (Mﬂ) E:'T'
L th ug vg sin
But the term in parentheses is 1, by the law of refraction, so this is the same as (ii).

Boundary condition (iv): 3 [iEu‘.[— cosé;) + lEuR cas&,} = L.E_E.‘.;,,.{—1:.'uu;ﬁig} =
My | vy Hals

o (P_ﬂ) Bi: Tihlaw Bl st | g B B BB

Havs cos b cos b’ pats

5 . » - - 2 -
Solving for Ey, and Eg,: 2B, = (1 + af)Ey, = £y, = (1 +aﬁ) Eyg,;
. - ~ 2 1+afl - = 1—afy -
Bay = Bor ~ B = (755~ Trag) Bor = Bon = (505 B
Since a and A are positive, it follows that 2/(1 + af) is positive, and hence the transmitted wave is in phase

2
with the incident wave, and the (real) amplitudes are related by | By, = (1 sy ﬁ) Ey, . | The reflected wave is

in phase if &3 < 1 and 180° out of phase if ad < 1; the (real} amplitudes are velated by | By = ‘%glgujl

These are the Fresnel equations for polarization perpendicular to the plane of incidence,
1 —sin® 4/ -
Te construct the graphs, note that af = 3 / - B2 —sin* @
cosf coaf
295 —gin® g

roa f

, where #is the angle of incidence,

g0, for 4= 1.5, alf =

4§
T AT e

|
e

= opate

S T i

TI020 0 M) B0 B0 T M0 D0 8

[t}



{5 there a Brewster's angle? Well, By, = 0 wonld mean that o = 1, and hence that
1= (o) ¥ sin’ @ ¥ 2
a= ‘/ : —1=@. nrl—(ﬁ) sinnﬁ':(&ﬁ) cos’ @, 50

cosé 5 4 Bty W M1y

3
1= (?) [sin” @ + (pa/ps }? cos® 8], Since g & gz, this means 1 & (vsfv)?, which is only true for optically
i

indistinguishable media, in which case there is of cowrse no reflection—but that would be true at any angle,
not just at a special "Brewster's angle”™. [If p; were substantially difforent from g, and the relative velocilies
wore just right. it would be possible to get a Brewster's angle for this case, at

2 g
vy 1 #a 2 1g_ t/fva)" =1  (mer/me) =1 _ (eafer) — (o /pta)
(ﬂs) P (:1) e e = =1 (el =T~ Giafpal= (i fpa)

But the media would be very paculiar |

By the same token, dp is either always 0, or always r, for a given interface—it does not switch aver as you
change @, the way it does for polarization in the plane of incidence. In particular, if 4 = 3/2, then o = 1, for

V25— sin’ f

af = e > 13 2.25 —gin®# > cos? 9, or 2.25 > 5in’ 0 + eos’d = 1. v
In genecal, for 3 > 1, af > 1, and hencedp=m Far 8 <1, ad <1, and §5 =
At normal incidence, o = 1, so Fresnel's equations reduce 1o By, = ( i ,’3) oy By = ‘;—;El gy

conaistent with Eq. 982,

2 2
Reflection and Transmission coeffictents: | R = (ﬁ") = ( L= ﬁﬁ) Referring to Bg. 0,116,
I

145

Ealhs. Eu, :_ 2 ¥
T=r.m”(fs‘n;) § ”ﬂ(unﬁ) '
(1-af) +408 _1-2af+a*3 +4af _ (1+08)" _

(4o 1+ ad)? T (14af)?

4T =

Problem 9. 30
(a) u = (EE2 + —B’) e [ﬁEg cos®(kz — wt +8g) + -i-B;f cos? (ks = wt+ 8 + ¢]]. Averaging
over a full cyL!E using {cos?) = 1 and Eq. 9.137:

I e, E 1 1 = 1 . i 2 I i :
Irz EE 2 - 2rz 2 2 - —2rz 2
(u) = —e [2— o+ 5 EU] =-g [{En + —Egepyf 1+ (— ) =3¢ B {1 +4f1+4 (e_) }

2 2 2 2
But Eq.9.126 3 1+/1+ (=) = f;% s0 (u) = —2”5_53 s :

magnetic contribution to the electric contribution is
{Umag) BDI’ po_ 1 \/ 1 a2 N \/ - 2
T = e = s 1+ &) 1+ (w) >1. ged

1 1
(b) 5 = ;{ExBJ = }:E.;.Bne_a"a cos(kz —wt+dg) cos(kz —wt+de+0) % (8) = %Euﬂuﬁd'" cosg @, [The

.| 8o the ratio of the

an 7 2pw?

average of the product of the cosinesis (1/2n) jf" cos Bl cos(@+¢) df = (1/2) casep] Sol = iE‘..;.B‘;]eﬂ.'z““‘ cosg =

1w g H ’
ﬁEﬁfe 2nz (-w_ COS ¢-) , while, from Eqgs. 9.133 and 9.134, K cosg = k, so EpuEﬂe_zﬂ' qed




Problem 9.30

Following Sect. 9.5.2, the problem is to solve Eq. 9.181 with E. # 0,B. = 0, subject to the boundary
tonditions 9.175. Let E.(z.y) = X(z)Y (y); as before, we obtain X(x) = Asin(k.z) + Dcos(k.z). But the
boundary condition requires E. = 0 (and hence X = 0) when e = 0 and £ = a, s0 B = 0 and k; = mn/a.
But this time m = 1,2,3,..., but not zero, since m = 0 would kill X entirely. The same goes for Y(y). Thus

E. = Egsin (m:I)sin (n_:y) with n,m =1,2,3,.

The rest is the same as for TE waves: |wy, = ery/(m/a)? + (n/b)? | is the cutoff frequency, the wave

velocity is v = ef/1 — (Wnn/w)?, and the group velocity is vy; = /1 — (wWmn /w)?. The lowest TM mode is
11, with cutoff frequency wyy = ery/(1/a)? + (1/b)2. So the ratio of the lowest TM frequency to the lowest

enJAJaP ¥ (PP _ [

TE frequency is

Problem 9.31

HvE__a(sE)_{}J:v.B_l qbed] 07 vxE_aE $— 1%‘?5; M,ﬁ;
s
. Euuam{kz wt) = B c'.:'ﬂqg.ﬁ lﬂ Eu..lsm{.".z—u;t] 1
= =2 B ¢ ¢ (since k = wich VxB= S i+ E'_EB} R

10E Egwsin(kz —wt)
2ot - &2
(b) To determine A, use Gauss's law for a cylinder of radius s and length dz:
cos(kz — wt) 1 1
E da= &T(Z'ﬂ'ﬂ dr = c_Q""“ = E—Adz = [A = 2meg Ep cos(kz — wt].|
0 a

To determine I, use Ampére's law for a circle of radius s (note that the displacement current through this

8 /. Boundary conditions: El = E. =0v:B+=RB,=0/.

2rs) = polene = | I = cos(kz —wt).

loop is zero, since E is in the & direction): fﬂ-(ﬂ = %ME i

Haot
The charge and current on the outer conductor are precisely the of these, since E = B = 0 inside
the metal, and hence the tatel enclosed charge and current must be zero,

Problem 9.33
1 8E,

(a) (i) Gouss’s law: ¥V E = rsnd 0 =0
(il) Faraday's law:
—%—? = Pt MH (sin 0E) F — ——(rEq,‘,lﬁl
2 ,;mﬁa% [Euﬂi—g (m;; = F:;sinu)] - ;B—E:, [Egsinﬂ (cnsu = I};sinu)] g,
But a-‘;cnsu = =k sin u; Esinu: kcos .
= bllnﬂETESIHEWSﬂ (r;nsu = %sinu) = %Egsinﬂ (—ksin u+ klz sinu — %cﬂsu) 8.

1
Integrating with respect to t, and noting that fcusudt = —;sinu and fsin udt = 2 COS i, we obtain
t!

2E, cosd

i 1 =
B= ¢ sinu + —ecosu | F+
wir? Er

ind K
Eos kmqu+imsu+lsmu a.
wr kr?

(iii) Divergence of B:

18 1
i (r*B,) + —m{smﬁBg}

= LP—- [M (si:11;+icns-u)]+ L —el E.nsinzﬂ( kmsu+-—1-n:usu+ 1smu)]
r2 dr w kr rsind 86 wr kr® r
= -}—-M (.i.r:osu - Lt:mﬂ: - lasmu.)
f'z wr k’fl r
1 2F;sinfcosd
rsind wr (

vV:-B =

1 1
—kcosu + ﬁmsu + »smu



2Ey cost!

wir®
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(b) Poyniing Vectar:
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Averaging over a full cycle, using (sinwucosu) = 0, (sin® u) = {cos® u) = %1 we get the intensity:
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It points in the # direction, and falls off as 1/r*, as we would expect for a spherical wave.
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