
a) -liar Tiv $\sigma(M)$. ta siva ${ }^{0},{ }^{\circ}=A \in \sigma(M)$. Esions, $\forall A \in M$ sin. A tovatexis $E Q$ a $a i v a i A^{C} \in \sigma(M) \Rightarrow O \in A \in \sigma(M)$ Kac $A \not t O(M), \forall A, B \in M$ Aalivai $A, B, A \cup B \in \sigma M]$

 *uxivaras inctal of $D(M)=0$. $D(M)$ Kal
 krait Tw [
$8 \rightarrow \lambda \quad \lim \int \cup \rho A N=\bigcap_{n=2}^{+\infty}[1]=\left[0_{1}\right]$

$$
\int_{x=1}^{x}-f(x) d \int_{0}^{+\infty}(x)^{\prime}(2-f(x)) d x(x) \cdot x \cdot(x)
$$

 unápxouv naxis T de

$=1<t \infty$ ka feisque to Tintaikno.

Pipa 40 [opoiws $]$ [ia va loxía oINHA on npisin al X, avesáptines, lravalisy ka va ixauv ifla fiobrift μ. To niphiqe loxivil mo unifaron. To Tpirenionls $10 x \dot{u}\{1$ aleri Excuk

 Eukona quivirar óll qu-i divetal ha $a=0 \mathrm{kal} a \rightarrow \pm \infty$, Euvgnis o
 A) $\forall a$ 位val: $f(x)=\left\{\begin{array}{l}0, x \neq c \\ 1, x=c\end{array}\right\} \Rightarrow p(x=c)=1$ (x)

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \rho\left(x_{n}=c\right)=1 \quad \leadsto \lim _{n \rightarrow+\infty} \rho\left(\left|x_{n}-x\right|=0\right)=1 \quad=1 \\
& \Rightarrow \lim _{n \rightarrow+\infty} p\left(\left|x_{h}-x\right| \pm 0\right)=0 \Rightarrow \forall \varepsilon \operatorname{can}_{\operatorname{tinp}}\left(\left|x_{b}-x\right| \geqslant \varepsilon\right)=0 \Rightarrow x_{b} \xrightarrow{p} x
\end{aligned}
$$

 $C=\left\{A E \varrho: \rho_{1}(A)=\rho_{2}(A)\right\}$. Pois n polarivs $B C\left(\Rightarrow \rho^{(1)}(B)\right.$
 bxiri: $\partial(B)=\sigma(B)=f$ Kan $(1)=1 \quad f=\sigma(B) C \partial(C)(2)$ 'opus ival, $P_{1}(\phi)=$

Tors $\forall B \in A$ sivar $p_{1}(B)=\rho_{2}\left(\left(a_{n}, b_{n}\right]\right)=p_{1}\left(\left(\omega_{0}, \beta_{n}\right] \backslash\left(-\infty, a_{n}\right]\right)=$

$$
\begin{aligned}
& =P_{2}\left(\left(-\infty, b_{n}\right] \backslash\left(-\infty, a_{n}\right]\right)=P_{2}\left(\left(\alpha_{n}, \sigma_{n}\right]\right)=P_{2}(B) \text {. Fnions, av } \beta_{2}, b_{2} \in A \text {. }
\end{aligned}
$$

$\left\{B_{1}=\left(a_{n 1} b_{n}\right], B_{2}=\left(a_{m}, b_{n}\right]\right.$ Eux
 Ipplearis, ari: rous opiohoís pur A, B^{1}, $A\left(B^{1}->\sigma(A) C B^{1}\right.$ (1).

 ofurs ${ }_{n=1}^{+\infty} B_{\infty}=\left(a_{n}, b_{n}\right]=B C \sigma(A)$ ousn is $\beta^{1} C A \Rightarrow \beta^{1} C \sigma(A)$ (2)
Ań (1),(z) inctan $B^{1}=\sigma(A)$ Kun to Jotaiktora. anion apke v. $8.0 . p\left(U_{1 \pi n}^{+\infty} 4\right)=1 \quad \forall$ nen.
flà $n=1, P\left(\mathcal{U}_{n-2}^{*-A_{m}}\right)=1$ Ano uniaron.

${ }^{\text {opur }} P\binom{U A_{n}}{n_{n}=n_{n+1}}$

$\Rightarrow \prod_{n=s}^{+\infty}\left[1-P\left(A_{n_{B}}\right)\right]=0 \quad(3)$
$(2),(3) \Rightarrow P(A D)=0$ n $1-P\left(A_{n}\right)=0 \quad r_{0}$ daipepo Eivai aimsis

日swg．niv．／Zo＇tapha $2: / 2008-9$（A）optafor．

 ker $\left|\frac{x_{h^{2}}}{1+x_{n}^{2}}\right| \leq \frac{1}{2}$
ppadiains oibkxcohs oq ixapr： $\lim _{\substack{ \\\rightarrow \rightarrow+\infty}}\left[\frac{x_{\Delta}^{3}}{1+x_{b}^{2}}\right]=E\left[\frac{1}{2}\right]=\frac{1}{2}$
finaidi To 弓隹oukivo．
An＝कiv $a_{\lambda \lambda 1}, E\left[\frac{x_{n}^{2}}{1+x_{n}^{2}}\right]=\left(\frac{x_{n}^{2}}{1+x_{n}^{2}} f(x) d x\right.$ kal $\left[\left[\frac{1}{2}\left[\frac{1}{\sqrt{2}}\right.\right.\right.$

$$
=\int_{-\infty}^{+\infty} \frac{1}{2} f(x) d x \text { divinis } \left.\left|E\left[\frac{x_{s}^{2}}{1+x_{s}^{2}}\right]-E\left[\frac{1}{2}\right]\right|=\int_{-\infty}^{+\infty} \right\rvert\, \frac{x_{p}^{2}}{1+x_{n}^{2}}\left[\frac{1}{2} \left\lvert\, \frac{1}{2} f_{0}\right.\right) d x
$$

 $\Lambda C \phi$ то $\Lambda=\varnothing$ k $\phi \subset A$ kal $P(\phi)=\rho(\Lambda)=0$ ápa $Q \in N$ kQu $Q 1 Q=Q \in N$ aior $a \in N U N^{\prime}=\varepsilon$
－Av $A \in \varepsilon$ rere $A \in N \cup N^{\prime}$ kea evouis $A \in N$ is $A \in N^{\prime}$.

$$
\begin{aligned}
& \Rightarrow A^{C}=N \Rightarrow A^{C} \in N \cup N^{\prime}=\varepsilon . \\
& -A V \text { AN }
\end{aligned}
$$

rust
－Av An NENEE \quad－

 $A_{1} \Lambda_{1}, \cdots, A_{p s}<\Lambda_{n}$ kal $P\left(\Lambda_{4}\right)=\ldots-\rho\left(A_{n)}\right)=0$,

 follabio, av.

 $-\theta f$, anar $Q(0)=E[x \cdot 10]=E[x] \frac{n 0}{\sigma_{\text {no }}^{0}} 1$
 $Q(t)=E[X \cdot 1 A] \geqslant 0 \quad \forall A \in f^{\prime}$.

 \qquad
\rightarrow Anc (a) ix oufz: $E(x)=\int_{0}^{+\infty} Q[x>x]=\int_{0}^{+\infty} E\left[x_{1}(x, *)\right] d x=$

$$
\begin{aligned}
& \Rightarrow\left[L E\left[\frac{x^{2}}{2}\right]\right]_{x}^{+\infty}-\int_{x}^{+\infty} 0 \cdot E\left[\frac{x^{2}}{2}\right] \partial x=E\left[\frac{x^{2}}{2}\right]=\frac{1}{2} E\left[x^{2}\right]^{0 \lambda(1)}(1)
\end{aligned}
$$

'Opus ano havoto quino $V[X]=E\left[x^{2}\right]-E[x]^{2} \stackrel{\text { Ynef. }}{=}$
$\Rightarrow 1=E\left[x^{2}\right]-1^{2} \Rightarrow E\left[x^{2}\right]=1+1 \Rightarrow E\left[x^{2}\right] \mathbb{I}(2)$
$(1),(2) \quad E_{Q}(x)=\frac{1}{2} \cdot 2 \Rightarrow E_{Q}(x)=1=E(x)$

 Eivau povorilavta of conava. Tors $\forall \varepsilon>0$ Aa Jn, on wot

