Θέμα 1. Για την καμπύλη \(c : r(t) = \left(1 - \sin t, \frac{1 - \cos t}{2}, \frac{\sqrt{3}(1 - \sin t)}{2}\right) \)

(α) υπολογίστε το τρίεδρο Frenet \(T, N, B \) στο τυχαίο σημείο της. (1μ)

(β) υπολογίστε την καμπυλότητα της στο τυχαίο σημείο της. (0,5 μ)

(γ) για κάθε σημείο της να βρείτε το εγγύτατο επίπεδό της. (0,5 μ)

(δ) βρείτε την καμπύλη των κέντρων καμπυλότητας της (επιρέπουμε εκφυλισμένες καμπύλες). (0,5 μ)

Θέμα 2. (φ) Βρείτε τις ενεργητικές και τις εξευθειμένες της κυκλικής εξίσωσης \(c : r(t) = (a \cos t, a \sin t, bt) \), \(t \in \mathbb{R} \) όπου \(a, b \in \mathbb{R}^* \) σταθερές. (1,5μ)

(β) Έστω \(D \) ένας επίπεδος δίσκος δίχως του συνοριακό του κύκλου, και \(\Phi \) ένας ημισφαίριο που εφάπτεται στο επίπεδο του δίσκου στο κέντρο του. Εξετάστε αν το σύνολο \(\Phi = D \cup S \) είναι απλή επιφάνεια ή όχι δικαίωμα της απάντησής σας. (1μ)

Θέμα 3. (α) Αποδείξτε τον τύπο της θεωρίας

\[
\frac{T'(t)}{||T'(t)||} \cdot N = \frac{L(u')^2 + 2Mu'v' + N(v')^2}{E(u')^2 + 2Fu'v' + G(v')^2}
\]

που υπολογίζει την κάθετη καμπυλότητα \(\kappa_n(t) \) μιας καμπύλης \(c : r(t), t \in I \) κάποιας επιφάνειας \(\Phi : f(u,v), (u,v) \in U \), στο σημείο της \(r(t) \). (1μ)

Δίνεται η επιφάνεια \(\Phi : f(u,v) = (u,u, u+v), (u,v) \in \mathbb{R}^2 \), και η καμπύλη της \(c : r(t) = f(t^2, t), t \in \mathbb{R} \).

(β) Παραμετροποιήστε την κάθετη τομή της \(\Phi \) στο σημείο \(f(1,2) \) με διεύθυνση \((1,-1) \). (0,5μ)

(γ) Υπολογίστε την κάθετη καμπυλότητα της \(c \) στο σημείο \(f(1,2) \). (1μ)

Θέμα 4. Έστω \(\Phi \) μια απλή επιφάνεια, \(A \) ένας \(3 \times 3 \) μήδεμας ορθογώνιος πίνακας με στοιχεία στο \(\mathbb{R} \) και \(b \) ένα διάνυσμα. Κι \(\Phi \) έστω η απεικόνιση \(F : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \), \(F(x) = Ax + b \). Δείξτε πως:

(φ) το υποσύνολο \(F(\Phi) \) του \(\mathbb{R}^3 \) παραμετροποιείται ως απλή επιφάνεια. (1μ)

(β) το περιορισμός \(F|_\Phi : \Phi \rightarrow F(\Phi) \) είναι ισομετρία. (1,5μ)