ГЕМФЕ 30-6-2010.

 Nash.

$$
\min _{y \in S_{n}} E(x, y)=\min \left\{E\left(x, e_{1}\right), E\left(x, e_{2}\right), \ldots E\left(x, e_{n}\right)\right\} .
$$

 є́ $\sigma \tau \omega \Delta_{t_{0}}=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}\right\}$ каı є́ $\sigma \tau \omega p=\left(p_{1}, p_{2}, \ldots, p_{S}\right)$ єíval тo olávvб $\mu a \pi l-$

 $i, j \in \sigma_{r}$ каı үıа ка́धє $r=1,2, \ldots, k$;

 $\chi \rho \eta \sigma \downarrow \mu \pi о џ \grave{\sigma \epsilon \tau \epsilon . ~}$

 $\mu \epsilon \tau а \xi ̆ u ́ ~ \delta v o ~ \chi \rho о \nu ı к с ́ \nu ~ \pi \epsilon \rho ı o ́ o \omega \nu ~ є i ́ v a l ~ r=0.04 . ~$

 $\Delta_{1}=\{\{1,2\},\{3,4,5,6\}\}, \Delta_{2}=\{\{1,2\},\{3,4\},\{5,6\}\}$, $\Delta_{3}=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}, \delta$ íavvo μa пiVavop \quad тa $p=\left(\frac{3}{13}, \frac{2}{13}, \frac{1}{13}, \frac{1}{13}, \frac{4}{13}, \frac{2}{13}\right)$

Ka入ŋ Emuruxía.

