ΕΞΕΤΑΣΕΙΣ ΤΟΠΟΛΟΓΙΑΣ 11/2/2010

 Δ ώστε τον ορισμό της τοπολογίας επί ενός συνόλου X. Έστω X άπειρο σύνολο και

$$\mathcal{T} = \left\{ A \subseteq X : X \setminus A \text{ πεπερασμένο} \right\} \cup \left\{ \emptyset \right\}$$

 Δ είξτε ότι η T είναι τοπολογία επί του X. A ν $A\subseteq X$ βρείτε τα Aκαι \overline{A} ως προς την T. (Υπόδειξη: Δ ιακρίνετε τις περιπτώσεις: (a) Aπεπερασμένο, (b) A άπειρο και $X \setminus A$ πεπερασμένο και (c) A άπειρο $χαι X \setminus A άπειρο.)$

 $m{\chi}$ Πότε μια οιχογένεια ${\cal B}$ από υποσύνολα ενός συνόλου X είναι βάση για μια τοπολογία επί του Χ; Έστω η εξής οικογένεια των ημιανοικτών διαστημάτων του \mathbb{R} ,

$$\mathcal{B} = \left\{ [a, b) : a, b \in \mathbb{R}, a < b \right\}$$

 $oldsymbol{\lambda}$ Δείξτε ότι η $\mathcal B$ είναι βάση για μια τοπολογία $\mathcal T$ επί του $\mathbb R.$

Δείξτε ότι η Τ περιέχει την συνήθη τοπολογία του R.

igwedge Έστω (X,T) τοπολογικός χώρος και $A\subseteq X$. Δείξτε ότι $X\setminus A=\overline{X\setminus A}$ χαι $X \setminus \overline{A} = (X \setminus A)^o$.

Θέμα 2.

 $A\subseteq\mathbb{R}^2$ αριθμήσιμο. Δείξτε ότι το $\mathbb{R}^2\setminus A$ είναι συνεχτιχό.

(eta) Δείξτε ότι οι χώροι $\mathbb R$ και $\mathbb R^2$ δεν είναι ομοιομορφικοί.

Έστω $\mathcal D$ το υποσύνολο του $\mathbb R^{\mathbb N}$ που αποτελείται από όλα τα $(x_n)_n \in \mathbb R^{\mathbb N}$ που ιχανοποιούν τις παραχάτω ιδιότητες

(i) το σύνολο $\{n \in \mathbb{N} : x_n \neq 0\}$ είναι πεπερασμένο.

(ii) Για κάθε $n \in \mathbb{N}$ το $x_n \in \mathbb{Q}$.

 Δ είξτε ότι το $\mathcal D$ είναι αριθμήσιμο πυχνό στον $\mathbb R^{\mathbb N}.$

Θέμα 3.

(χ) Έστω X Hausdorff T₃ χώρος.

igwedge Έστω $U\subseteq X$ ανοικτό και $x\in U$. Δείξτε ότι υπάρχει $V\subseteq X$ ανοικτό \dag ώστε $x \in V \subseteq \overline{V} \subseteq U$.

(💓 Υποθέτουμε επιπλέον ότι ο Χ έχει αριθμήσιμη βάση. Δείξτε ότι κάθε ανοιχτό υποσύνολο του X είναι F_{σ} .

(β) Έστω Χ Hausdorff, Τ3 και με αριθμήσιμη βάση.

(i) $\Delta \epsilon i \xi \tau \epsilon \ \delta \tau i \ o \ X \ \epsilon i v lpha i \ T_4.$

(ii) Έστω $U\subseteq X$ ανοικτό. Δείξτε ότι υπαρχει f:X o [0,1] συνεχής ώστε f(x)>0 για κάθε $x\in U$ και f(x)=0 για κάθε $x\not\in U$. (Υπόδειξη: Χρησιμοποιείστε το α(ii), δηλαδή ότι το U είναι F_{σ} .)

for = apoly sum alsi sen.

W. W. = b

Έστω Χ Hausdorff τοπολογικός χώρος.

-1 48 int A.

Ex:

Έστω $K\subseteq X$ συμπαγές και $x\in X\setminus K$. Δείξτε ότι υπάρχουν $U_x,V_x\subseteq$ X ανοιγτά και ξένα ώστε $K \subseteq U_x$ και $x \in V_x$.

X Έστω K_1, K_2 ξένα συμπαγή υποσύνολα του X. Δείξτε ότι υπάρχουν $U_1, U_2 \subseteq X$ ανοικτά και ξένα ώστε $K_1 \subseteq U_1$ και $K_2 \subseteq U_2$.

(i) Αν ο X συμπαγής, τότε δείξτε ότι ο X είναι T_4 . Έστω X Hausdorff συμπαγής. Δείξτε ότι αν υπάρχει ακολουθία $f_n:X\to$ $\mathbb{R},\ n=1,\ldots$ συνεχών συναρτήσεων που διαχωρίζει τα σημεία του X, τότε ο Χ είναι μετριχοποιήσιμος.

Έστω X Hausdorff συμπαγής και αριθμήσιμος. Δείξτε ότι ο X είναι μετρικοποιήσιμος.

ΚΑΛΗ ΕΠΙΤΥΧΊΑ!