Εξετάσεις Κυρτής Ανάλυσης 4/6/2007

Θέμα 1 (α) Δώστε τον ορισμό της χυρτής συνάρτησης $f:\mathbb{R}\to\mathbb{R}$ και δείξτε με επαγωγή στο $n\in\mathbb{N}$ ότι $f\left(\sum_{i=1}^n\lambda_ix_i\right)\leq\sum_{i=1}^n\lambda_if(x_i)$ για κάθε $n\in\mathbb{N}$, $x_1,...,x_n$ στο \mathbb{R} και $\lambda_1,...,\lambda_n>0$ με $\sum_{i=1}^n\lambda_i=1$.

(β) (i) Διατυπώστε ένα κριτήριο κυρτότητας για παραγωγίσιμες συναρτήσεις $f:\mathbb{R}\to\mathbb{R}$ και με βάση αυτό δείξτε ότι η συνάρτηση $f(x)=e^x$ είναι συναρτήση $f(x)=e^x$ είναι συναρτήση

΄ (ii) Δείξτε ότι $\prod_{i=1}^n y_i^{\lambda_i} \leq \sum_{i=1}^n \lambda_i y_i$ για κάθε $n \in \mathbb{N}, \ y_1,...,y_n$ στο $(0,+\infty)$ και $\lambda_1,...,\lambda_n>0$ με $\sum_{i=1}^n \lambda_i=1$.

 (γ) Έστω $f: \mathbb{R} \to \mathbb{R}$ κυρτή και $x_0 \in \mathbb{R}$ ώστε η f παρουσιάζει τοπικό ελάχιστο στο x_0 . Δείξτε ότι το x_0 είναι θέση ολικού ελαχίστου.

Θέμα 2 (α) Έστω $A\subseteq \mathbb{R}^n$. Δώστε τον ορισμό της κυρτής θήκης conv(A) του A. Πως περιγράφεται η conv(A) απο τα στοιχεία του A;

(β) Έστω $x_1, x_2, ..., x_k$ σημεία του \mathbb{R}^n με $k \ge n+2$.

(i) Δείξτε ότι υπάρχουν $\mu_1,...,\mu_k$ στο $\mathbb R$ όχι όλοι μηδέν, ώστε $\sum_{i=1}^k \mu_i=0$ και $\sum_{i=1}^k \mu_i x_i=0$. (Υπόδειξη: Τα σημεία $x_2-x_1,x_3-x_1,...,x_k-x_1$ είναι πλήθους $k-1\geq n+1$.)

(ii) Έστω $I=\{i\in\{1,...k\}:\mu_i\geq 0\}$ και $J=\{i\in\{1,...,k\}:\mu_i< 0\}.$ Δείξτε ότι τα I,J είναι μη κενά, ξένα και

$$conv(\{x_i:\ i\in I\})\cap conv(\{x_i:\ i\in J\})\neq \emptyset.$$

Θέμα 3 (α) (i) Δώστε τον ορισμό του ακραίου σημείου και του ακραίου υποσυνόλου ενός κυρτού $K\subseteq\mathbb{R}^n$. Απεικονίστε σχηματικά το σύνολο $T=\{(x,y)\in\mathbb{R}^2:\max\{|x|,|y|\}=1\}$ και βρείτε τα ακραία σημεία και τα ακραία υποσύνολα του.

(β) (i) Διατυπώστε το θεώρημα Krein-Milman-Minkowski για συμπαγή κυρτά υποσύνολα του \mathbb{R}^n .

΄ (ii) Έστω $f:\mathbb{R}^n\to\mathbb{R}$ γραμμική συνάρτηση, $K\subseteq\mathbb{R}^n$ συμπαγές κυρτό και έστω $M=\max\{f(x):x\in K\}$. (1) Δείξτε ότι το σύνολο $F=\{x\in K:f(x)=M\}$ είναι συμπαγες κυρτό και ακραίο υποσύνολο του K. (2) Δείξτε ότι υπάρχει x_0 ακραίο σημείο του K με $x_0\in F$.

Θέμα 4 (α) Έστω F, G υποσύνολα του \mathbb{R}^n . Έστω $f:\mathbb{R}^n\to\mathbb{R}$ γραμμική, ώστε f(x)< a< b< f(y) για κάθε $x\in F$ και $y\in G$. Δείξτε ότι f(x)< a< b< f(y) για κάθε $x\in conv(F)$ και $y\in conv(G)$ και ότι $conv(F)\cap conv(G)=\emptyset$.

- (β) Έστω A, B υποσύνολα του \mathbb{R}^n . Αν για κάθε $F\subseteq A$ και κάθε $G\subseteq B$ με πλήθος σημείων το πολύ n+1 ισχύει ότι $conv(F)\cap conv(G)=\emptyset$ δείξτε ότι $conv(A)\cap conv(B)=\emptyset$.
- (γ) Έστω $A,\,B$ συμπαγή υποσύνολα του $\mathbb{R}^n.$ Δείξτε ότι τα επόμενα είναι ισοδύναμα.
 - 1. Τα Α, Β διαχωρίζονται αυστηρά.
 - 2. Για κάθε $F\subseteq A$ και κάθε $G\subseteq B$ με πλήθος σημείων το πολύ n+1, τα F,G διαχωρίζονται αυστηρά.

(Υπενθυμίζουμε ότι δύο σύνολα A, B του \mathbb{R}^n διαχωρίζονται αυστηρά αν υπάρχουν a < b στο \mathbb{R} και γραμμική $f: \mathbb{R}^n \to \mathbb{R}$ ώστε f(x) < a < b < f(y) για κάθε $x \in A$ και $y \in B$. Θυμηθείτε επίσης ότι αν $A \subseteq \mathbb{R}^n$ συμπαγές τότε και conv(A) συμπαγές.).