Е $\xi \in \tau \alpha ́ \sigma \varepsilon เ \varsigma ~ \Pi р \alpha \gamma \mu \alpha \tau เ x ท ́ s ~ A v \alpha ́ \lambda \cup \sigma \eta ร ~$ 16 Феßрочарíu 2002

о $\mu \dot{\alpha} \delta \alpha$ B

OMA $\Delta \mathrm{A} A$

$\Theta \varepsilon{ }^{\prime} \mu \alpha$ A. 1

(i) $\Delta ı \alpha \tau u \pi \omega \sigma \tau \varepsilon$ чov opıoúo irs vópuas бъo X.
 $\mu \varepsilon т р и м э ́ s$.

$$
\begin{aligned}
\|\vec{x}\|_{\infty} & =\max \left\{\left|x_{i}\right|: i=1, \ldots, n\right\} \\
\|\vec{x}\|_{1} & =\sum_{i=1}^{n}\left|x_{i}\right|
\end{aligned}
$$

$\gamma\left\llcorner\alpha\right.$ ќ́vध $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
(i) Δ हíg te ótı o: $\left\|\|_{\infty}\right.$ रoll $\| \|_{1}$ हíval vópues σ :ov \mathbb{R}^{n}.

$$
\|\vec{x}\|_{\infty} \leq\|\vec{x}\|_{1} \leq n\left\|_{\vec{x}}\right\|_{\infty}
$$

$\gamma\left(\alpha \chi \alpha \hat{\chi} \vartheta \varepsilon \vec{x} \in \mathbb{R}^{n}\right.$.

ఆé $\mu \alpha$ A. 2

 oupitaүés utooúvolo tou X.

 норча оuvex'̃'s.
© $\varepsilon^{\prime} \mu \alpha$ A. 3

 ouүx入ive: $x \alpha \tau \dot{x}$ onueío otnv f.

OMA $\triangle \mathrm{AB}$

©é $\mu \alpha$ B. 1

$\Theta \varepsilon ́ \mu \alpha$ B. 2

$$
G=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y=f(x)\}
$$

$$
\partial A=\left\{x \in X: x \text { op! } \alpha<\delta \text { onueio tou } A \text { x } \alpha \text {, ,ou } A^{c}\right\} .
$$

$\Theta \varepsilon ́ \mu \alpha$ B. 3

 onusia tou X.
 enions пuxvó $\sigma \div 0 X$.
 E!val U

