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Thermodynamics 
 

Review of Zeroth, First, Second and Third Laws 

 

Thermodynamics 

 
Why study thermal and statistical physics ? What use is it ? 
 
 

The zeroth law of thermodynamics, 

 
If each of two systems is in thermal equilibrium with a third, then they are also in 

thermal equilibrium with each other. 

 
This implies the existence of a property called temperature. Two systems that 
are in thermal equilibrium with each other must have the same temperature. 
 

Temperature, T 

 
The 0th law of thermodynamics implies the existence of a property of a system 
which we shall call temperature, T. 
 

Heat, Q 

 
In general terms this is an amount of energy that is supplied to or removed 
from a system. When a system absorbs or rejects heat the state of the system 
must change to accommodate it. This will lead to a change in one or more of 
the thermodynamic parameters of the system e.g. the temperature, T, the 
volume, V, the pressure, P, etc. 
 

Work, W 

 
When a system has work done on it, or if it does work itself, then there is a 
flow of energy either into or out of the system. This will also lead to a change 
in one or more of the thermodynamics parameters of the system in the same 
way that gaining or losing heat, Q, will cause a change in the state of the 
system, so too will a change in the work, W, done on or by the system. 
 
When dealing with gases, the work done is usually related to a change in the 
volume, dV, of the gas. This is particularly apparent in a machine such as a 
cars engine. 
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Internal energy, U 

 
The internal energy of a system is a measure of the total energy of the 
system. If it were possible we could measure the position and velocity of every 
particle of the system and calculate the total energy by summing up the 
individual kinetic and potential energies. 
 

1 1

N N

n n

U KE PE

= =

= +∑ ∑
 

 
However, this is not possible, so we are never able to measure the internal 
energy of a system. What we can do is to measure a change in the internal 
energy by recording the amount of energy either entering or leaving a system. 
 
In general, when studying thermodynamics, we are interested in changes of 
state of a system. 
 

U Q W∆ = ∆ + ∆  

which we usually write, 

dU Q W= +đ đ  

 

The bar through the differential, đ , means that the differential is inexact, this 

means that the differential is path dependent i.e. the actual value depends on 
the route taken, not just the start and finish points. 
 

 

The first law of thermodynamics, 
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If a thermally isolated system is brought from one equilibrium state to another, the 

work necessary to achieve this change is independent of the process used. 

 
We can write this as, 

Adiabatic
dU W= đ  

 
Note : when we consider work done we have to decide on a sign convention. 
By convention, work done on a system (energy gain by the system) is positive 
and work done by the system (loss of energy by the system) is negative. 
 
e.g. 
 

• W PdV= +đ : compression of gas in a pump (T of gas increases). 

• W PdV= −đ : expansion of gas in an engine (T of gas decreases). 
 

Isothermal and Adiabatic Expansion 

 
When we consider a gas expanding, there are two ways in which this can 
occur, isothermally or adiabatically. 
 

• Isothermal expansion : as it’s name implies this is when a gas 
expands or contracts at a constant temperature (‘iso’-same, ‘therm’-
temperature). This can only occur if heat is absorbed or rejected by the 
gas, respectively. The final and initial states of the system will be at the 
same temperature. 

 

 
 

• Adiabatic expansion : this is what happens when no heat is allowed 
to enter or leave the system as it expands or contracts. The final and 
initial states of the system will be at different temperatures. 

 

Heat Capacity 

 
As a system absorbs heat it changes its state (e.g. P,V,T) but different 
systems behave individually as they absorb the same heat so there must be a 
parameter governing the heat absorption, this is known as the heat capacity, C. 
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The heat capacity of a material is defined as the limiting ration of the heat, Q, 

absorbed, to the rise in temperature, ∆T, of the material. It is a measure of the 
amount of heat required to increase the temperature of a system by a given 
amount. 
 

T 0

limit
Q

C
T∆ →

 
=  

∆ 
 

 
When a system absorbs heat its state changes to accommodate the increase 
of internal energy, therefore we have to consider how the heat capacity of a 
system is governed when there are restrictions placed upon how the system 
can change. 
 
In general we consider systems kept at constant volume and constant 
temperature and investigate the heat capacities for these two cases. 

Heat capacity at constant volume, CV 

 
If the volume of the system is kept fixed then no work is done and the heat 
capacity can be written as, 
 

V

V

U
C

T

∂ 
= =  

∂ 

VđQ

dT
 

 

Heat capacity at constant pressure, CP 

 
The heat capacity at constant pressure is therefore analogously, 
 

P
C =

P
đQ

dT
 

 
We now use a new state function known as enthalpy, H, (which we discuss 
later). 

H U PV

dH dU PdV VdP

dH Q VdP

= +

⇒ = + +

= +đ

 

 
Using this definition we can write, 
 

P

P

H
C

T

∂ 
= =  

∂ 

PđQ

dT
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Relationship between CV and CP 

 
The internal energy of a system can be written as, 

 

-

dU Q W

Q dU PdV

= +

⇒ =

đ đ

đ
 

 
Assuming the change of internal energy is a function of volume and 

temperature, ( , )U U V T= , i.e. we have a constant pressure process, this 

can be written as, 
 

T V

U U
Q dV dT PdV

V T

∂ ∂   
= + +   

∂ ∂   
đ  

 
which leads to, 

P

P

T P V P

P V

T P

Q U V U V
C P

dT V T T T

U V
C C P

V T

∂ ∂ ∂ ∂       
⇒ = = + +       

∂ ∂ ∂ ∂       

 ∂ ∂   
∴ = + +    

∂ ∂    

đ

 

 
This is the general relationship between CV and CP.  
 
In the case of an ideal gas the internal energy is independent of the volume 
(there is zero interaction between gas particles), so the formula simplifies to, 

 

P V

P

P V

V
C C P

T

C C R

∂ 
= +  

∂ 

⇒ − =

 

The second law of thermodynamics, 

 
The Kelvin statement of the 2nd law can be written as, 
 
It is impossible to construct a device that, operating in a cycle, will produce no 

effect other than the extraction of heat from a single body at a uniform temperature 

and the performance of an equivalent amount of work. 
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A more concise form of this statement is, 
 
A process whose only effect is the complete conversion of heat into work is 

impossible. 

 

Another form of the 2nd law is known as the Clausius statement, 
 
It is impossible to construct a device that, operating in a cycle, will produce no 

effect other than the transfer of heat from a colder to a hotter body. 

 

 

Heat Engines 

 
Heat engines convert internal energy to mechanical energy. We can consider 
taking heat QH from a hot reservoir at temperature TH and using it to do useful 
work W, whilst discarding heat QC to a cold reservoir TC. 
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It would be useful to convert all the heat , QH, extracted into useful work but 
this is disallowed by the 2nd law of thermodynamics. 
 

 
 

If this process were possible it would be possible to join two heat engines 
together, whose sole effect was the transport of heat from a cold reservoir to a 
hot reservoir. 

 

 
 

Efficiency of a heat engine 

 
We can define the efficiency of a heat engine as the ratio of the work done to 
the heat extracted from the hot reservoir. 

 

1
H C C

H H H

W Q Q Q

Q Q Q
η

−

= = = −

 
 

From the definition of the absolute temperature scale1, we have the 
relationship, 
 

C H

C H

Q Q

T T
=

 
 

                                            
 

1 For a proof of this see Finn CP, Thermal Physics,  
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One way of demonstrating this result is the following. Consider two heat 
engines which share a common heat reservoir. Engine 1 operates between T1 
and T2 and engine 2 operates between T2 and T3. We can say that there must 
be a relationship between the ratio of the heat extracted/absorbed to the 
temperature difference between the two reservoirs, i.e. 

 

( ) ( ) ( )' ''1 2 1

1 2 2 3 1 3

2 3 3

, , , , ,

Q Q Q
f f f

Q Q Q
θ θ θ θ θ θ= = =

 

 
Therefore the overall heat engine can be considered as a combination of the 
two individual engines. 
 

( ) ( ) ( )'' '

1 3 1 2 2 3
, , ,f f fθ θ θ θ θ θ=

  
However this can only be true if the functions factorize as, 

 

( )
( )

( )
,

x

x y

y

T
f

T

θ
θ θ

θ
→

 

 

Where T(θ) represents a function of absolute, or thermodynamic temperature. 
Therefore we have the relationship, 

 

( )

( )
11

2 2

TQ

Q T

θ

θ
=

 
 

Therefore we can also write the efficiency relation as, 
 

1
C

H

T

T
η = −  

 
The efficiency of a reversible heat engine depends upon the temperatures 
between which it operates. The efficiency is always <1. The most efficient 
heat engine is typified by the Carnot cycle. 
 

The Carnot Cycle 
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The Carnot cycle is a closed cycle which extracts heat QH from a hot reservoir 
and discards heat QC into a cold reservoir while doing useful work, W. The 
cycle operates around the cycle A►B►C►D►A 

 
 

 
 

 
We can consider this cycle in terms of the expansion/contraction of an ideal 
gas. 
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A heat engine can also operate in reverse, extracting heat, QC from a cold 
reservoir and discarding heat, QH, into a hot reservoir by having work done on 
it, W, the total heat discarded into the hot reservoir is then, 

 

H C
Q Q W= +  

 

 
 

This is the principle of the refrigerator. 
 

The Otto Cycle 

 
The Carnot cycle represents the most efficient heat engine that we can 
contrive. In reality it is unachievable. 
 
Two of the most common heat engines are found in vehicles, the 4-stroke 
petrol engine and the 4-stroke diesel engine. 
 
The 4-stroke cycle can be considered as: 
 

1. Induction : Petrol/Air mixture drawn into the engine cylinder. 
2. Compression : Petrol/Air mixture compressed to a small volume by the 

rising piston. 
3. Power : Ignition of petrol/air mixture causes rapid expansion pushing 

the piston down the cylinder 
4. Exhaust : Exhaust gases evacuated from the cylinder by the rising 

piston. 
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The 4-stroke petrol engine follows the Otto cycle rather than the Carnot cycle. 
The actual cycle differs slightly from the idealised cycle to accommodate the 
introduction of fresh petrol/air mixture and the evacuation of exhaust gases. 
 

 
 

The Otto cycle and the Diesel cycle can be approximated by PV diagrams. 
 

Otto cycle 
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Diesel cycle 

 

 
 

Concept of Entropy : relation to disorder 

 
We shall deal with the concept of entropy from both the thermodynamic and 
the statistical mechanical aspects. 
 
Suppose we have a reversible heat engine that absorbs heat Q1 from a hot 
reservoir at a temperature T1 and discards heat Q2 into a cold reservoir at a 
temperature T2, then from the efficiency relation we have, 
 

1 2

1 2

Q Q

T T
=  

but from the 2nd law we know that we cannot have a true reversible cycle, 
there is always a heat loss, therefore we should rewrite this relationship as, 
 

1 2

1 2

Q Q

T T
<  

 
The heat absorbed in one complete cycle of the heat engine is therefore, 
 

0≤∫�
đQ

T  
 

This is known as the Clausius inequality. 
 
If we had a truly reversible heat engine then this would be, 
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0
R

=∫�
đQ

T  
The inequality of an irreversible process is a measure of the change of 

entropy of the process. 

 

final

final initial
initial

Q
S S S∆ = − = ∫

đ

T
 

 
so for an infinitesimal part of the process we have, 

 

dS ≥
đQ

T
 

 

The definition of Entropy 

 
An entropy change in a system is defined as, 
 

dS =
đQ

T
 

 
The entropy of a thermally isolated system increases in any irreversible process and 

is unaltered in a reversible process. This is the principle increasing entropy. 

 

The entropy of a system can be thought of as the inevitable loss of precision, 
or order, going from one state to another. This has implications about the 
direction of time. 
 
The forward direction of time is that in which entropy increases – so we can 
always deduce whether time is evolving backwards or forwards. 
 
Although entropy in the Universe as a whole is increasing, on a local scale it 
can be decreased – that is we can produce systems that are more precise – 
or more ordered than those that produced them. An example of this is creating 
a crystalline solid from amorphous components. The crystal is more ordered 
and so has lower entropy than it’s precursors. 
 
On a larger scale – life itself is an example of the reduction of entropy. Living 
organisms are more complex and more ordered than their constituent atoms. 
 

Entropy related to heat capacity 

 
Suppose the heat capacity of a solid is CP=125.48 JK

-1. What would be the 
entropy change if the solid is heated from 273 K to 373 K ? 
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Knowing the heat capacity of the solid and the rise in temperature we can 
easily calculate the heat input and therefore the entropy change. 

dS =
đQ

T
 

 
We integrate over the temperature range to determine the total entropy 
change. 

1
ln 39.2

final

initial

final

initial

T

final initial
T

T
P

T

final
P

initial

dQ
S S S

T

C dT

T

T
C JK

T

−

∆ = − =

=

 
= = 

 

∫

∫  

 

The entropy of a rubber band 

 
A rubber band is a collection of long chain polymer molecules. In its relaxed 
state the polymers are high disordered and entangled. The amount of disorder 
is high and so the entropy of the system must be high. 

 
 
If the rubber band is stretched then the polymers become less entangled and 
align with the stretching force. They form a quasi-crystalline state. This is a 
more ordered state and must therefore have a lower entropy. 
 
The total entropy in the stretched state is made up of spatial and thermal 
terms. 
 

Total Spatial ThermalS S S= +  

 
If the tension in the band is rapidly reduced then we are performing an 
adiabatic (no heat flow) change on the system. The total entropy must remain 
unchanged since there is no heat flow, but the spatial entropy has increased 
so the thermal entropy must decrease this means the temperature of the 
rubber band drops. 

Stretching force 
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The third law of thermodynamics, 

 
The entropy change in a process, between a pair of equilibrium states, associated 

with a change in the external parameters tends to zero as the temperature 

approaches absolute zero. 

 

Or more succinctly, 
 
The entropy of a closed system always increases. 

 
An alternative form of the 3rd law given by Planck is, 
 
The entropy of all perfect crystals is the same at absolute zero and may be taken as 

zero. 

 
In essence this is saying that at absolute zero there is only one possible state 
for the system to exist in so there is no ambiguity about the possibility of it 
existing in one of several different states. 
 
This concept becomes more evident when we consider the statistical concept 
of entropy. 

The central equation of thermodynamics 

 
The differential form of the first law of thermodynamics is, 
 

dU Q W= +đ đ  

 
Using our definition for entropy and assuming we are dealing with a 
compressible fluid we can write this as, 
 

-dU TdS PdV=  
 
This is more usually written as, 
 

TdS dU PdV= +  
 

This assumes that all the work done is due to changes of pressure, rather 
than changes of magnetisation etc. 
 

The entropy of an ideal gas 

 
The specific heat capacity at constant volume for a gas is, 
 

V

V

U dU
C

T dT

∂ 
= = 

∂ 
 

 



PH605 : Thermal and Statistical Physics  19 

M.J.D.Mallett@ukc.ac.uk  14/02/2001 

Substituting this into the central equation gives, 
 

V
TdS C dT PdV= +  

 
If we consider one mole of an ideal gas and use lower case letters to refer to 
molar quantities then we can write this as, 
 

V

v

RT
Tds c dT dv

v

dT dv
ds c R

T v

= +

= +

 

Integrating both sides gives us, 
 

0
ln ln

v
s c T R v s= + +  

 
So the entropy of an ideal gas has three main terms, 
 

1. A temperature term – related to the motion, and therefore kinetic 
energy of the gas 

2. A volume term – related to the positions of the gas particles 
3. A constant term – the intrinsic disorder term which is un-measurable. 

 
As an example of this can be used, consider gas inside a cylinder of volume, 
V0. Suppose the volume of the cylinder is suddenly doubled. What is the 
increase in entropy of the gas ? 
 
Assuming this change occurs at constant temperature, we can write, 
 

0 02 0 0

0

0

ln 2 ln

2
ln ln2

V V
s s s R V R V

V
R R

V

∆ = − = −

 
= = 

 

 

 
If we were dealing with more than one mole of gas we could write this as, 

 

ln 2

ln2
B

s nR

Nk

∆ =

=
 

 
Where n is the number of moles and N is the number of molecules. We will 
return to this result when we look at the statistical definition of entropy. 
 

Thermodynamic Potentials : internal energy, enthalpy, Helmholtz 
and Gibbs functions, chemical potential 
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The equilibrium conditions of a system are governed by the thermodynamic 
potential functions. These potential functions tell us how the state of the 
system will vary, given specific constraints. 
 
The differential forms of the potentials are exact because we are now dealing 
with the state of the system. 

Internal energy 

 
This is the total internal energy of a system and can be considered to be the 
sum of the kinetic and potential energies of all the constituent parts of the 
system. 

1 1n n

U KE PE

∞ ∞

= =

= +∑ ∑  

 
This quantity is poorly defined since we are unable to measure the individual 
contributions of all the constituent parts of the system. 
 
Using this definition of internal energy and the 2nd law of thermodynamics we 
are able to combine the two together to give us one of the central equations of 
thermodynamics, 
 

TdS dU PdV= +  
 
This enables us to calculate changes to the internal energy of a system when 
it undergoes a change of state. 
 

dU TdS PdV= −  

Enthalpy 

 
This is sometimes erroneously called the heat content of a system. This is a 
state function and is defined as, 
 

H U PV= +  
 
We are more interested in the change of enthalpy, dH, which is a measure of 
the heat of reaction when a system changes state. In a mechanical system 
this could be when we have a change in pressure or volume. In a 
predominantly chemical system this could be due to the heat of reaction of a 
change in the chemistry of the system. 
 

dH dU PdV VdP= + +  
 

Helmholtz free energy 
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The Helmholtz free energy of a system is the maximum amount of work 
obtainable in which there is no change in temperature. This is a state function 
and is defined as, 

F U TS= −  
 

The change of Helmholtz free energy is given by, 
 

dF dU TdS SdT

PdV SdT

= − −

= − −

 

 

Gibbs free energy 

 
The Gibbs free energy of a system is the maximum amount of work obtainable 
in which there is no change in volume. This is a state function and is defined 
as, 

G H TS= −  
The change of Gibbs free energy is given by, 

 

dG dH TdS SdT

VdP SdT

= − −

= −

 

 
It is obvious that the Helmholtz and Gibbs free energies are related, 

 

( )G F PV∆ = ∆ + ∆  

 

and the correct one to use has to be ascertained for the system in hand. For 
example, a metal undergoes very small volume changes so we could use the 
Gibbs function whereas a gas usually has large volume changes associated 
with it and we have to chose the function depending upon the situation. 
 

Useful work 

 
Suppose we have a system that does work and that part of that work involves 
a volume change. If the system returns to its initial state of pressure and 
temperature at the end of it doing some work then there is no temperature 
change, i.e. 
 

• Initial temperature and pressure = T0 and P0 

• Final temperature and pressure = T0 and P0 
 
Then because there is no overall temperature change, the maximum amount 
of work done by the system is given by the decrease in the Helmholtz free 
energy, F, of the system. 
 

Total
W F= −∆
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However, some of the work done is useless work, suppose the actual gas 
expansion was a by product of some chemical reaction, then we would want 
to know how much useful work has actually been done. 

( )

0

0

0

Useful Total Useless

Total

Useful

W W W

W P V

F P V

F PV

W G

= −

= − ∆

= −∆ − ∆

= −∆ +

= −∆

 

 
Therefore, the decrease in the Gibbs free energy tells us how much useful 
work was done by this process. 

Chemical Potential 

 
This is important when the quantity of matter is not fixed (e.g. we are dealing 
with a changing number of atoms within a system). When this happens we 
have to modify our thermodynamic relations to take account of this. 
 

dU TdS PdV dN

dF PdV SdT dN

dG VdP SdT dN

µ

µ

µ

= − +

= − − +

= − +

 

 

This means that there are several ways of writing the chemical potential, µ. 
 

, , ,S V V T T P

U F G

N N N
µ

∂ ∂ ∂     
= = =     

∂ ∂ ∂     
 

 
We can also show that the chemical potential can be written, 
 

G

N
µ =  

 

The chemical potential, µ, is the Gibbs free energy per particle, provided only one 

type of particle is present. 

 

The state functions in terms of each other 

 
We can write infinitesimal state functions for the internal energy, U, the 
enthalpy, H, the Helmholtz free energy, F and the Gibbs free energy, G. 
 

dU TdS PdV= −  

dH TdS VdP= +  

dF SdT PdV= − −  



PH605 : Thermal and Statistical Physics  23 

M.J.D.Mallett@ukc.ac.uk  14/02/2001 

dG SdT VdP= − +  
 
By inspection of these equations it would appear that there are natural 
variables which govern each of the state functions. 
 
For instance, from the formula for the Helmholtz free energy we can assume 
its natural variables are temperature and volume and therefore we can write, 
 

V

F
S

T

∂ 
= − 

∂ 
 and 

T

F
P

V

∂ 
= − 

∂ 
 

 
and from the formula for the Gibbs free energy, assuming its natural variables 
are temperature and pressure, we have, 
 

P

G
S

T

∂ 
= − 

∂ 
 and 

T

G
V

P

∂ 
= 

∂ 
 

 
This means that if we know one of the thermodynamic potentials in terms of 
its natural variables then we can calculate the other state functions from it. 
 
Suppose we know the Gibbs free energy, G, in terms of its natural variables T 
and P, then we can write, 
 

T P

P

T

G G
U G PV TS G P T

P T

G
H G TS G T

T

G
F G PV G P

P

∂ ∂   
= − + = − −   

∂ ∂   

∂ 
= + = −  

∂ 

∂ 
= − = −  

∂   
 

Differential relationships : the Maxwell relations 

 
The Maxwell relations are a series of equations which we can derive from the 
equations of state for U, H, F and G. 

Maxwell relation from U 

 
We already have an equation of state for dU, 
 

dU TdS PdV= −  
 
This suggests that U is a function of S and V, therefore we could rewrite this 
as, 
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V S

U U
dU dS dV

S V

∂ ∂   
= +   

∂ ∂   
 

 
which would then mean that we can write, 
 

V S

U U
T and P

S V

∂ ∂   
= = −   

∂ ∂   
 

 
moreover we can then write, 

 

V S

P T

S V

∂ ∂   
= −   

∂ ∂   
 

 
This is the first Maxwell relation. 
 

Maxwell relation from H 

 
We already have an equation of state for dH, 
 

dH TdS VdP= +  
 
This suggests that H is a function of S and P, therefore we could rewrite this 
as, 
 

P S

H H
dH dS dP

S P

∂ ∂   
= +   

∂ ∂   
 

 
which would then mean that we can write, 
 

P S

H H
T and V

S P

∂ ∂   
= =   

∂ ∂   
 

 
moreover we can then write, 
 

P S

V T

S P

∂ ∂   
=   

∂ ∂   
 

 
This is the second Maxwell relation. 
 

Maxwell relation from F 

 
We already have an equation of state for dF, 
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dF SdT PdV= − −  
 
This suggests that F is a function of T and V, therefore we could rewrite this 
as, 
 

V T

F F
dF dT dV

T V

∂ ∂   
= +   

∂ ∂   
 

 
which would then mean that we can write, 
 

V T

F F
S and P

T V

∂ ∂   
= − = −   

∂ ∂   
 

 
moreover we can then write, 
 

V T

P S

T V

∂ ∂   
= −   

∂ ∂   
 

 
This is the third Maxwell relation. 
 

Maxwell relation from G 

 
We already have an equation of state for dG, 
 

dG VdP SdT= −  
 
This suggests that G is a function of P and T, therefore we could rewrite this 
as, 
 

T P

G G
dG dP dT

P T

∂ ∂   
= +   

∂ ∂   
 

 
which would then mean that we can write, 
 

T P

G G
V and S

P T

∂ ∂   
= = −   

∂ ∂   
 

 
moreover we can then write, 

 

P T

V S

T P

∂ ∂   
= −   

∂ ∂   
 

 
This is the fourth Maxwell relation. 
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Use of the Maxwell Relations 

 
Consider applying pressure to a solid (very small volume change), reversibly 
and isothermally. The pressure applied changes from P1 to P2 at a 
temperature, T. The process is reversible so we can write, 
 

dS =
R

đQ

T
 

 
Since the only variables we have are pressure, P and temperature, T, we can 
write the entropy change of the system as a function of these two variables. 
 

T P

dS dP dT
T

∂ ∂   
= +   

∂ ∂   

S S

P
 

so therefore, 
 

R

T

dQ TdS T dP
∂ 

= =  
∂ 

S

P
 

 
The second term is zero since the process is isothermal, dT=0. 
 
Using the Maxwell relation derived from the Gibbs free energy, 
 

P T

V S

T P

∂ ∂   
= −   

∂ ∂   
 

 
 we can then write, 
 

R

P

dQ T dP TV dPβ
∂ 

= − = − 
∂ 

V

T
 

 

Where β is the coefficient of expansion. Integrating this gives, 

 

( )

2

1

2 1

P

P

Q TV dP

TV P P

β

β

= −

≈ − −

∫
 

 

The approximation sign assumes β to be constant. 

Applications to simple systems 
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The thermodynamic derivation of Stefan’s Law 

 
The energy density of thermal radiation (black-body radiation) is dependent 
only on the temperature of the black body. The energy density at a particular 
wavelength is then,  

uλ=uλ(λ,T) 
 

and the total energy density is, 
u=u(T) 

 
The Planck formula for the spectral energy density is given by, 
 

( )
5

1
,

1B

hc
k T

u T

e

λ

λ

β
λ

λ

 
=  

 
− 

 

 

where β is a constant. 
 
The perfect gas theory tells us that the pressure of a gas can be expressed in 
terms of the mean velocity, c. 
 

21
3

P cρ=  

 
but when we are dealing with thermal radiation we can use the Einstein mass-
energy relation, 
 

2 2
E mc u cρ= ⇒ =  

therefore, 

3

u
P =  

 
The energy equation for a PVT system is, 
 

T V

U P
T P

V T

∂ ∂   
= −   

∂ ∂   
 

 
substituting into this we have, 
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4

1 1

3 3

4

3 3

4

du
u T u

dT

T du
u

dT

dT du

T u

u AT

= −

=

=

⇒ =

 

where A is a constant. 

 
 
 

Equilibrium conditions : phase changes 

 

Phase changes 

 
A change of phase of a system occurs when the system changes from one 
distinct state into another. This change of phase can be caused by many 
different factors e.g. temperature changes can cause a phase change 
between a solid and a liquid, applied magnetic fields can cause a phase 
change between a superconductor and a normal conductor. 
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P-T Diagrams 

 
In a simple system comprising a single substance we can construct a 
Pressure-Temperature diagram (P-T diagram) showing how changes in 
pressure or temperature can affect the phase of the system. 
 

 
 

PVT Surface 

 
The PT diagram is a specialised case of the more general PVT surface. This 
gives us all the thermodynamic information we require when determining the 
available phase changes. 
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Both the PT and PV diagrams can be obtained from the PVT surface by 
projection. 

 

 
 

First-Order phase change 

 
A first-order phase change of a substance is characterised by a change in the 

specific volume between the two phase, accompanied by a latent heat. 
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Some typical examples of first-order phase changes are: 
 

• The transition of a solid melting into a liquid. 

• The transition of a liquid boiling into a gas. 

• The change from superconductor to normal conductor, provided the 
change occurs in an applied magnetic field. 

 

Second-Order phase change 

 
Second-Order phase change of a substance is characterised by no change in the 

specific volume between the two phases and no accompanying latent heat. 

 
Some typical examples of a second-order phase change are: 
 

• The transition from ferro-magnet to para-magnet at the Curie 
temperature. 

• The transition from superconductor to normal conductor, provided there 
is no applied magnetic field. 

• The change from normal liquid 4Helium to superfluid liquid 4Helium 
below 2.2K 

 

Phase change caused by ice skates 

 
Water has a particularly interesting phase diagram. It is one the few materials 
that expands on freezing (or contracts on melting), this is a consequence of 
the effects of Hydrogen-bonding within the material. 
 

 
 
This has implications which can be used to our advantage to allow ice skating. 
The ‘hollow-ground’ edge of an ice skate causes an enormous pressure on 
the ice surface of 100 atmospheres or more. This pressure increases occurs 
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at constant temperature and the phase of the ice crosses the melting line on 
the PT diagram. The skater is now standing on a thin layer of water which acts 
as a lubricant between the skate and the bulk of the ice. 
 
If the temperature is too low then the increased pressure of the skate on the 
ice surface is insufficient to cause the ice to cross the melting line and so ice 
skating is not possible. 
 
Skiing is not a pressure-melting effect since the surface area of the sky is far 
to large to cause melting of snow, instead the effect is caused by frictional 
heating and wax lubricant applied to the ski. 
 

The Clausius-Clayperon Equation for 1st order phase changes. 

 
When a phase change occurs we are mostly interested in how it affects the 
Gibbs free energy. At thermodynamic equilibrium the Gibbs function is at a 
minimum, so at the transition line on the PT diagram the specific Gibbs energy 
is the same for both phases. 
 

1 2
( , ) ( , )g P T g P T=  

 
Further along the transition line we must also have the same condition. 
 

1 2
( , ) ( , )g P dP T dT g P dP T dT+ + = + +  

 
Expanding this to first order using a Taylor approximation, 
 

1 1 2 2

1 2
( , ) ( , )

P T P T

g g g g
g P T dT dP g P T dT dP

T P T P

∂ ∂ ∂ ∂       
+ + = + +       

∂ ∂ ∂ ∂       
 

 
So therefore, 
 

1 2 2 1

P P T T

g g g g
dT dP

T T P P

   ∂ ∂ ∂ ∂       
− = −          

∂ ∂ ∂ ∂          
 

 
From our previous discussion about the natural variables for the Gibbs 
function, we can write, 
 

T P

G G
V and S

P T

∂ ∂   
= = −   

∂ ∂   
 

 
and therefore considering the specific quantities, we have 
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2 1 2 1

2 1 2 1

dP s s S S

dT v v V V

− −

= =

− −

 

 
The latent heat associated with this phase change is related to the entropy 
change, 
 

( )2 1
L Q T S S= ∆ = −  

 
Which gives us the Clausius-Clayperon equation which is the gradient of the 
phase transition line for a first order phase change. 
 

( )2 1

dP L

dT T V V
=

−

 

 

The Ehrenfest equation for 2nd order phase changes 

 
In a second order phase change there is no latent heat, and so no entropy 
change, and no volume change. So using a similar argument as the one for 
the Clausius-Clayperon equation, 

 

1 2
( , ) ( , )s P T s P T=  

 
Further along the transition line we must also have the same condition. 
 

1 2
( , ) ( , )s P dP T dT s P dP T dT+ + = + +  

 
Expanding this to first order using a Taylor approximation, 
 

1 1 2 2

1 2
( , ) ( , )

P T P T

s s s s
s P T dT dP s P T dT dP

T P T P

∂ ∂ ∂ ∂       
+ + = + +       

∂ ∂ ∂ ∂       
 

 
Now substituting in expressions for the specific heat capacity and the volume 
expansion, 

 

1

P P

s v
c T and

T v T
β

∂ ∂   
= =   

∂ ∂   
 

 
we can write, 

 

( )
1 2

1 2

P P
dP C C

dT TV β β

−

=

−
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This is the first Ehrenfest equation for a 2nd order phase change, the second 
Ehrenfest equation can be derived by considering the continuity of the volume 
of the two phases, which gives, 

 

2 1

2 1

dP

dT

β β

κ κ

−

=

−

 

 

where κ is the bulk modulus of the phase. 
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Basic statistical concepts 

 

Isolated systems and the microcanonical ensemble : the 
Boltzmann-Planck Entropy formula 

 

Why do we need statistical physics ? 

 
There are two ways that we can look at the behaviour of matter 
 

1. Mechanical viewpoint : measuring the positions and velocities of atoms 
at the microscopic level. 

2. Thermodynamic viewpoint : measuring the bulk properties of matter at 
the macroscopic level. 

 
However, when we try and reconcile the two viewpoints we run into a 
problem. Theoretically we should get the same answers from both viewpoints. 
However there is a problem with the direction of time, 
 

• Microscopic time : reversible e.g. the laws of motion look identical 
whichever way time goes. 

• Macroscopic time : non-reversible, there is a preferred direction of time 
defined by the increase of entropy of the Universe. 

 
The two viewpoints can be reconciled by looking at systems from a statistical 
or probabilistic viewpoint. 

Macrostates and Microstates 

 
When we are dealing with a system, e.g. a gas inside a container, we can 
determine various properties of the system. In our example of a gas we can 
determine, i.e. measure, the volume, V, the pressure, P, the temperature, T, 

the molecular density, ρ, plus others. 
 
The state of the system can therefore be defined by quantities such as V,P,T 

& ρ. This is called a macrostate. In thermodynamic terms we usually only 
consider macrostates. 
 
However, this gives us no knowledge of the properties of the individual gas 
particles, for instance their positions or velocities. There are several, 
effectively infinitely many, states of a system which all have the same 
macrostate. Each of these individual states are known as microstates. They 
have different positions, velocities etc. for the individual particles but all have 
the same thermodynamic properties such as volume, pressure and 
temperature. 
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Classical vs Quantum 

 
The classical view of the universe allows us an infinite choice of position and 
velocity. This implies that for any given macrostate there must be an infinite 
number of microstates that correspond to it. 
 
The quantum viewpoint however tells us that at the atomic level we are able to 
assign quantum numbers to the properties of particles. So for a closed system 
there are only a finite number of states that the system can occupy. 
 
In this scenario the most probable macrostate for a system is the one that has 
the most microstates – simply because we have the greatest chance of finding 
the system in that microstate. 
 

The thermodynamic probability, Ω 

 
The number of possible microstates for a given macrostate is called the 

thermodynamic probability, Ω, or sometimes, W. This is not a probability in the 
normal sense since it has a value greater than or equal to one. 
 

Consider a system of two particles A and B that can both exist in one of two 
energy levels, E1 and E2. The macrostate of this system can be defined by the 
total energy of the system. 
 

Macrostate (1) E1 + E1 (2) E1 + E2 (3) E2 + E2 

Microstate A(E1),B(E1) 
A(E1),B(E2) 

A(E2),B(E1) 
A(E2),B(E2) 

Ω 1 2 1 

 
Therefore if both energy levels, E1 and E2 are equally likely the system has a 
50% chance of being in macrostate (2) and a 25% chance each of being in 
macrostates (1) and (3). 
 
However, in general not every energy level is equally likely so the most likely 
macrostate is also governed by the probability of energy level occupation. 
 
This leads on to the concept of the partition function, Z, for a system, which 
we will cover later. 
 

How many microstates ? 

 
Suppose we are dealing with a paramagnetic solid. This means we have 
atoms arranged in a regular crystalline lattice and each atom acts as a 
magnetic dipole because it has an unpaired electron. 
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In a magnetic field the magnetic dipole can either point along the field or 
against the field. Therefore there are two possible states for each dipole, 
‘spin-up’ or ‘spin-down’. 
 
Therefore, for N atoms (N~1023) there must be 2N possible microstates for the 
magnetic dipoles. 
 
How long would it take for the system to sample all the possible microstates ? 
 
Assuming a dipole changes orientation every 10-10seconds there would be a 
new microstate generated every 10-33seconds, so every microstate would be 
sampled after 

~
( )23
2 33

10
−

seconds 
 
The lifetime of the Universe is only ~1017seconds ! 
 
Instead of considering one system and watching it change we use the concept 
of an ensemble. 

What is an ensemble ? 

 
An ensemble is a very large number of replica systems with identical 
specifications e.g. volume, temperature, chemistry, number of particles etc. 
The ensemble represents the macrostate of the system while each individual 
replica represents on of the possible microstates. 
 
 
 
 
 
 
 
 
There are several different ensembles that we might encounter. The type of 
ensemble is governed by the measurable parameters. 
 

System Ensemble 

i 1 2 3 n 
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1. Micro-canonical ensemble : isolated systems, the total internal 
energy, U, and number of particles, N, is well defined. 

 

2. Canonical ensemble : systems in thermal equilibrium, the 
temperature, T, and number of particles, N, is well defined. 

 

3. Grand canonical ensemble : systems in thermal and chemical 

contact, the temperature, T, and chemical potential, µ, is well defined. 
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Stirling’s Approximation 

 
We are now dealing with very large numbers ! Almost any macroscopic 
system will have on the order of 1023 particles. 
 
The mathematics of such large numbers can become very involved but 
fortunately there are some simple approximations that work well when the N is 
very large. 
 
There are two particularly useful approximations known as Stirling’s two-term 
and three-term approximations; they are, 
 

• Stirling’s 2-term approximation 
 

( )ln ! lnN N N N= −  

 
Example 

( )ln 100! 100ln100 100

360.5170 ( )

360.7394 ( )

Stirlings approximation

Actual value

≈ −

≈

=

 

• Stirling’s 3-term approximation 
 

( )ln ! ln ln 2N N N N Nπ= − +  

 
Example 

( )ln 100! 100ln100 100 ln 200

360.7385 ( )

360.7394 ( )

Stirlings approximation

Actual value

π≈ − −

≈

=

 

 
These approximations are particularly useful when dealing with 
thermodynamic probabilities. 
 

Entropy and probability 

 
In statistical mechanics each particle is seen as having its own dynamic state, 
a position in space, and a spatial velocity or momentum. In three-dimensional 
space this gives the particle 3 degrees of freedom.  
 
Three position coordinates and three momentum coordinates place each 
particle somewhere in the six-dimensional phase space. If there is more than 
one particle you can consider the system of those particles as having 6 times 
N coordinates and hence a single position in a 6N-dimensional phase space.  
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Alternatively you can stick with the 6-dimensional phase space and have N 
points in it. In this latter picture you might cut up the phase space into cells 
and count how many particles are in each cell.  
 
From this picture of phase space cell occupation numbers it is a small step to 
the thermodynamic probability. If the total number of particles is N and the 
number of particles in each cell is Nj, then the thermodynamic probability is 
given by, 
 

!
exp ln ln

!
j j

jj

j

N
N N N N

N

 
Ω = ≈ − 

 
∑

∏
 

 

The quantity, Ω, is known as the thermodynamic probability or thermodynamic 

weight of the state of an ensemble (Note: Ω is sometimes written as W). The 

states with the largest values of Ω are those that are most likely to occur. 
 

However the states with the largest value of Ω are also those with the most 
disorder – simply because there are so many configurations of the microstates 
to give one macrostate. This means that there must be relationship between 
the thermodynamic weight of a system and the entropy of a system. 
 
Therefore if 

Ω tends to a maximum, 

then, 
S tends to a maximum. 

 

The Boltzmann-Planck entropy formula 

 
The Boltzmann-Planck equation for entropy is written, 
 

ln
B

S k= Ω  

 

where Ω is the thermodynamic probability, or the 
number of arrangements, of the state of the system. 

The states with the largest value of Ω will be the ones 
most likely to occur. This equation is carved on 
Boltzmann’s tombstone in Vienna. 
 

 

Entropy related to probability 

 
To derive this we first consider an ensemble of a large number, v, of replica 
systems. Each of these individual systems can exist in one of, r, microstates, 
and for each microstate there is an associated probability, pr, of the system 
being in that microstate. 
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Therefore, within the ensemble, the number of systems in the microstate, r, is 
simply, 
 

r r
pν ν=  

 
The thermodynamic probability of the ensemble is then given by, 
 

1 2 3

!

! ! !... !...
r

ν

ν

ν ν ν ν

Ω =  

 
Applying this to the Boltzmann-Planck equation gives us, 
 

1 2 3

ln

!
ln

! ! !... !...

ln ln

B

B

r

B r r

r

S k

k

k

ν ν

ν

ν ν ν ν

ν ν ν ν

= Ω

 
=  

 

 
= − 

 
∑

 

 
which has been simplified using Stirling’s 2-term approximation. The entropy 
of the ensemble is thus related to the entropy of a single system. 
 

1
ln ln

ln ln

ln )

B r r

r

B r r

r

B r r

r

S S k

k p p

k p p (for large

ν
ν ν ν ν

ν

ν ν

ν

 
= = − 

 

 
= − 

 

≈ −

∑

∑

∑

 

 

The Schottky defect 

 
At absolute zero the atoms in a crystalline solid are perfectly ordered. They 
inhabit regular lattice positions within the crystal. 
 
As the temperature increases the atoms gain energy and are able to thermally 
vibrate. What are known as defects can occur within the crystal, where an 
atom has moved away from its original ordered position. These are known as 
point defects. 
 
One particular type of point defect is the Schottky defect. In this case a 
displaced atom will migrate to the surface of the crystal, leaving a vacancy 
behind it. 
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Suppose we have a crystal composed of N atoms. Inside this crystal there are 

n defects. Each defect has an associated energy ε, since it takes energy to 
move the atom from the interior to the surface. 
 
The energy associated with all the defects is, 
 

E nε=  
 
What is the thermodynamic probability (or statistical weight) of this system ? 
 

( )

!
( )

! !

N
n

n N n
Ω =

−
 

 
The entropy resulting from the Schottky defects will then be, 
 

( )

!
( ) ln ( ) ln

! !
B B

N
S n k n k

n N n

 
= Ω =  

− 
 

 
The temperature of the crystal can be expressed in terms of the changes in 
entropy and energy of the crystal, 
 

1

( )

1 ( )

S S

T Q E

dS n dn

dn dE

dS n

dnε

∂ ∂
= =
∂ ∂

=

=

 

 
Using Stirling’s two-term approximation we can write, 
 

[ ]

[ ]

( ) ln ln ( ) ln( )

( )
ln ln( )

B
S n k N N n n N n N n

dS n
k n N n

dn

= − − − −

⇒ = − + −

 

 
So the temperature then becomes, 
 

1
ln

B
k N n

T nε

−

=  

 
Rearranging this gives us, 
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1

1B

B

k T

k T

n

N
e

n Ne

ε

ε
−

=

+

∴ =

 

 
This means that instead of expressing the temperature as a function of the 
number of Schottky defects we can now work out how many defects we can 
expect to find at a given temperature. 
 

The defect energy is usually of the order of ε~1eV. 
 

Temperature (K) n/N 

0 (absolute zero) 0 

290 (room temperature) 10-17 

1000 10-6 

 

Spin half systems and paramagnetism in solids 

 
Suppose we have a system of N molecules in the form of a crystalline solid. If 
one of the atoms of the molecule has an unpaired electron then we can 
consider the effect of an external magnetic field applied to the solid. 
 
An electron has an angular momentum s=1/2. In an applied magnetic field the 
electron spin will align with the magnetic field either parallel or anti-parallel to 
the field. 
 
We therefore have a system of N spins, each of which can exist in either a 
spin-up or spin-down state. 
 
The energies associated with the spin-up and spin-down states respectively 
are, 
 

B

B

U BN

U BN

µ

µ

↑= − ↑

↓= ↓
 

 
so the total energy of the system is, 

 

( )
B B

B

U BN BN

N N B

µ µ

µ

= − ↑ + ↓

= − ↑ − ↓
 

There will be N↑ spins in the spin-up state and N↓ in the spin-down state. So 
for this two state system the thermodynamic weight will be, 
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( ) ( )
!

! !

N

N N

Ω =
↑ ↓

 

 
But we can write the spin-up and spin-down states in terms of the difference 
between them i.e., 
 

n N N= ↑ − ↓  

N N N= ↑ + ↓  
 

Therefore, the thermodynamic weight, Ω, is, 
 

( )
!

! !
2 2

N
n

N n N n
Ω =

+ −   
   
   

 

 
which looks something like this. 

 

Ω(n) 

n 

All spins 

anti-parallel (n= -N)

All spins 

parallel (n=N)

Integral= 2N 

 
 
The state equation for the internal energy of a system gives us, 
 

dU TdS PdV= −  
 
but when we are dealing with a solid the volume change, dV, is negligible and 
the number of particles, N, is constant. 
 

1

dU TdS

dU
T

dS

dS

T dU

=

⇒ =

⇒ =
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Using the Boltzmann-Planck entropy equation, ln
B

S k= Ω  we can write, 

 

( )

( )

ln ( )1

ln ( )

ln
2

B

B

B

d ndS
k

T dU dU

d n dn
k

dn dU

k N n dn

N n dU

Ω
= =

Ω
=

− 
=  

+ 

 

 
We know that, 

1

B

dn

dU Bµ
= −  

therefore, 

1 1
ln

2

B

B

k N n

T N n Bµ

− − 
=  

+ 
 

Rearranging this we get, 

1
ln

2

B

B

B N n

k T N n

µ− − 
=  

+ 
 

which can be written, 

2xN n
e

N n

−

− 
= 

+ 
 

where, 

B

B

B
x

k T

µ
=  

Using the hyperbolic identity, 

tanh( )
x x

x x

e e n
x

e e N

−

−

 −
= = 

+ 
 

 
we finally have an expression for the total magnetisation of the solid. 

 

tanh
B

B B

B

B
M n N

k T

µ
µ µ

 
= =  

 
 

 

Systems in thermal equilibrium and the canonical ensemble : the 
Boltzmann distribution 

 

The Boltzmann distribution 
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Consider the thermal equilibrium between a system (1) and a large thermal 
reservoir (2) (heat bath). 
 
 
At a particular point in time the system (1) will be in a certain microstate, r, 
with an associated energy, Er. The total energy of the system is E0 so the 
energy of the thermal reservoir (2) is, 
 

2 0 r
E E E= −  

 

The probability of finding the system (1) in the microstate, r, is related to the 
thermodynamic weight. 
 

( )

( )
2 0

2 0

( )
r

r

r

E E
P r

E E

Ω −
=

Ω −∑
 

 

Using the Taylor expansion of ( )( )2 0
ln

r
E EΩ −  we get, 

 

( )( ) ( ) ( )( )2 0 2 0 2 0
ln ln ln ...

r r r
E E E E E E

E

∂
 Ω − = Ω − Ω − + ∂

 

 
However we have the definition that, 
 

( )( )2 0

1
ln

B

E
k T E

∂
 = Ω ∂

 

So we can write, 
 

( ) ( )0 0

r

B

E

k T

r
E E E e

−

Ω − =Ω  

 
Substituting this into the equation for the probability of finding system (1) in a 
microstate, r, gives, 

 

( )

( )

0

0

( )

r

B

r

B

E

k T

E

k T

r

E e
P r

E e

−

−

Ω
=

Ω∑

 

 
which gives the Boltzmann distribution, 
 



PH605 : Thermal and Statistical Physics  47 

M.J.D.Mallett@ukc.ac.uk  14/02/2001 

( )

r

B

r

B

E
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e

−

−

=
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Single particle partition function, Z, and ZN for localised particles : 
relation to Helmholtz function and other thermodynamic 
parameters 

 

The single particle partition function, Z 

 
The partition function, Z, is a weighted count of the number of possible 
microstates, n, that a particle can achieve, that takes account of the difficulty 
of reaching them. 
 

n

B

E

k T

n

Z e

−

=∑  

 

The partition function for localised particles 

 
When we are dealing with a large number of particles the partition function 
has to take into account all the possible combinations of the microstates for 
each particle. 
 
However, the value of the partition function is dependent upon whether or not 
we can distinguish the particles we are dealing with. 
 

1. Distinguishable particles : paramagnetic ions in a solid, distinguishable 
by their lattice positions. 

2. Indistinguishable particles : gas particles. 
 

The N-particle partition function for distinguishable particles 

 
Suppose we have three localised particles (a,b,c) with a distinct set of possible 
energy levels for each particle (Ea,Eb,Ec). The partition function for these three 
particles is given by, 
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( )

3

a b c

B

a b c

B B B

E E E

k T
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E E E

k T k T k T

Z e

e e e

+ +

−
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=

=

∑

∑ ∑ ∑

 

The particles all have the same set of energy levels so this becomes, 
 

3

3

3 1

a

B

E

k T
Z e Z

−

 
 = =
 
 

∑  

 
So for N distinguishable particles we have, 
 

( )1
N

N
Z Z=  

 

The N-particle partition function for indistinguishable particles 

 
If the particles are indistinguishable then there is no meaning to assigning 
separate energies to them since we cannot identify them.  
 
The choice of energies Ea,Eb,Ec is then represented by one term in the sum 
over microstates, so the partition function for N indistinguishable particles is 
smaller by a factor N! than for N distinguishable particles. 
 
Distinguishable particles, 
 

( )

( )

( )

3

3

2

1

a b c

B

a b c

B

a b c

B

E E E

k T

different energies

E E E
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different energies

E E E

k T

different energies

Z e

e

e

+ +

−

+ +

−

+ +

−

=

+

+

∑

∑

∑

 

 
Indistinguishable particles, 
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Therefore for large N, where we can assume that no two particles share the 
same microstate, we have, 

 

( )
( )

!

N

N

Z distinguishable
Z indistinguishable

N
=

 

So for indistinguishable particles, the N-particle partition function is given by, 
 

( )1
!

N

N

Z
Z

N
=  

 
This is valid in the semi-classical approximation. 

Helmholtz function 

 
We already have and expression for the Helmholtz function, 
 

F U TS= −  
 

and an expression for the entropy of a system in terms of the probability Pr, 
 

ln
B r r

r

S k P P= − ∑  

where, 
r

B

E

k T

r

e
P

Z

−

=  

so the entropy can be written, 
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Simplifying this gives us, 

ln
B

E
S k Z

T
= +  

so, 

ln

ln

B

B

k T Z E TS

U TS

F k T Z

− = −

= −

⇒ = −

 

 
The Helmholtz free energy, F, is a minimum for a system in thermodynamic 
equilibrium at constant T,V,N. 
 

Adiabatic cooling 

 
The most common form of cooling is by refrigeration using process based on 
the Linde Liquifier. Heat is exchanged by compressing and expanding a 
working fluid. 
 
At temperatures very close to absolute zero this operation becomes 
impossible since almost all systems will exist in a solid state. 
 
Adiabatic demagnetisation is an important technique for reaching extremely 
low temperatures. The disorder and hence entropy of a paramagnetic salt is 
temperature dependent and magnetic field dependent. 
 

• SThermal is proportional to temperature 

• SMagnetic is inversely proportional to magnetic field. 
 

Total Magnetic ThermalS S S= +  

 
So if we reduce the magnetic field adiabatically, and so SMagnetic increases, the 
total entropy must remain constant and the thermal entropy must decrease 
with a corresponding temperature drop. 
 
The sample is enclosed in a liquid Helium heat bath from which it can be in 
contact or thermally isolated and placed within the pole pieces of an 
electromagnet. The magnetic field can be rapidly switched between a high 
value (B1) and a low value (B0). 
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For a system in thermal equilibrium the Helmholtz function is a minimum, 
 

F U TS= −  
 
We can express the entropy of the system in terms of the partition function, 
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T
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= +

 

 
The single particle partition function is easy to calculate since each particle 
can only be in one of two microstates, ‘spin-up’ or ‘spin-down’. 

 

1
B B

B B

k T k T
Z e e

µ µ
−

= +  

 
Simplifying this by making the substitution, 

 

1
2cosh

B

x x

B
x

k T

Z e e x

µ

−

=

= + =

 

 
The internal energy of the system can also be expressed in similar terms. 

 

[ ] [ ]( )

1 1
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e e
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e e
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= − − 

 

 −
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+ 

= −

 

 
So the entropy of the system is given by, 

 

( )ln 2cosh tanh
B

S Nk x x x= −    

 
So we see the entropy of the system is essentially a function of x, so for the 
adiabatic change, 

 

1 0

1 2

B B

T T
=  

 
Therefore if we reduce the magnetic field adiabatically (no change in entropy 
because no heat flow) the temperature of the system must reduce. This 
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enables us to reduce the temperature of the paramagnetic solid below that of 
the surrounding Helium bath. 

Thermodynamic parameters in terms of Z 

 
The Helmholtz function tells us, 

F U TS= −  
 

and from this we can derive the state equation, 
 

,

,

,

T B

V B

T V
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