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Notations.

We use the standard (Bourbaki) notations:

N = {0, 1, 2, . . .},
Z = ring of integers,

R = field of real numbers,

C = field of complex numbers,

Fp = Z/pZ = field with p elements,p a prime number.

Given an equivalence relation,[∗] denotes the equivalence class containing∗.
Throughout the notes,p is a prime number, i.e.,p = 2, 3, 5, 7, 11, . . ..
Let I andA be sets. A family of elements ofA indexed byI, denoted(ai)i∈I , is a

functioni 7→ ai : I → A.
Rings are required to have an identity element1, and homomorphisms of rings are

required to take1 to 1.
X ⊂ Y X is a subset ofY (not necessarily proper).

X
df
= Y X is defined to beY , or equalsY by definition.

X ≈ Y X is isomorphic toY .
X ∼= Y X andY are canonically isomorphic (or there is a given or unique isomorphism).

References.
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1 Basic Definitions

Definitions

DEFINITION 1.1. Agroup is a nonempty setG together with a law of composition(a, b) 7→
a ∗ b : G×G → G satisfying the following axioms:

(a) (associative law) for alla, b, c ∈ G,

(a ∗ b) ∗ c = a ∗ (b ∗ c);

(b) (existence of an identity element) there exists an elemente ∈ G such that

a ∗ e = a = e ∗ a

for all a ∈ G;
(c) (existence of inverses) for eacha ∈ G, there exists ana′ ∈ G such that

a ∗ a′ = e = a′ ∗ a.

When (a) and (b) hold, but not necessarily (c), we call(G, ∗) asemigroup.1

We usually abbreviate(G, ∗) to G, and we usually writea ∗ b ande respectively asab
and1, or asa + b and0.

Two groupsG andG′ areisomorphicif there exists a one-to-one correspondencea ↔
a′, G ↔ G′, such that(ab)′ = a′b′ for all a, b ∈ G.

REMARK 1.2. In the following,a, b, . . . are elements of a groupG.
(a) If aa = a, thena = e (multiply by a′ and apply the axioms). Thuse is the unique

element ofG with the property thatee = e.
(b) If ba = e andac = e, then

b = be = b(ac) = (ba)c = ec = c.

Hence the elementa′ in (1.1c) is uniquely determined bya. We call it theinverseof a, and
denote ita−1 (or thenegativeof a, and denote it−a).

(c) Note that (1.1a) implies that the product of any ordered triplea1, a2, a3 of elements
of G is unambiguously defined: whether we forma1a2 first and then(a1a2)a3, or a2a3 first
and thena1(a2a3), the result is the same. In fact, (1.1a) implies that the product of any
orderedn-tuplea1, a2,. . . , an of elements ofG is unambiguously defined. We prove this
by induction onn. In one multiplication, we might end up with

(a1 · · · ai)(ai+1 · · · an) (1)

as the final product, whereas in another we might end up with

(a1 · · · aj)(aj+1 · · · an). (2)

1Some authors use the following definitions: when (a) holds, but not necessarily (b) or (c),(G, ∗) is
semigroup; when (a) and (b) hold, but not necessarily (c),(G, ∗) is monoid.
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Note that the expression within each pair of parentheses is well defined because of the
induction hypotheses. Thus, ifi = j, (1) equals (2). Ifi 6= j, we may supposei < j. Then

(a1 · · · ai)(ai+1 · · · an) = (a1 · · · ai) ((ai+1 · · · aj)(aj+1 · · · an))

(a1 · · · aj)(aj+1 · · · an) = ((a1 · · · ai)(ai+1 · · · aj)) (aj+1 · · · an)

and the expressions on the right are equal because of (1.1a).
(d) The inverse ofa1a2 · · · an is a−1

n a−1
n−1 · · · a−1

1 , i.e., the inverse of a product is the
product of the inverses in the reverse order.

(e) Axiom (1.1c) implies that the cancellation laws hold in groups:

ab = ac ⇒ b = c, ba = ca ⇒ b = c

(multiply on left or right bya−1). Conversely, ifG is finite, then the cancellation laws imply
Axiom (c): the mapx 7→ ax : G → G is injective, and hence (by counting) bijective; in
particular,1 is in the image, and soa has a right inverse; similarly, it has a left inverse, and
the argument in (b) above shows that the two inverses must then be equal.

The order of a group is the number of elements in the group. A finite group whose
order is a power of a primep is called ap-group.

For an elementa of a groupG, define

an =


aa · · · a n > 0 (n copies ofa)
1 n = 0
a−1a−1 · · · a−1 n < 0 (|n| copies ofa−1)

The usual rules hold:
aman = am+n, (am)n = amn. (3)

It follows from (3) that the set
{n ∈ Z | an = 1}

is an ideal inZ. Therefore,2 this set equals(m) for somem ≥ 0. Whenm = 0, a is said
to haveinfinite order, andan 6= 1 unlessn = 0. Otherwise,a is said to havefinite order
m, andm is the smallest integer> 0 such thatam = 1; in this case,an = 1 ⇐⇒ m|n;
moreovera−1 = am−1.

EXAMPLE 1.3. (a) Form ≥ 1, let Cm = Z/mZ, and form = ∞, let Cm = Z (regarded as
groups under addition).

(b) Probably the most important groups are matrix groups. For example, letR be a
commutative ring. IfA is ann × n matrix with coefficients inR whose determinant is a
unit3 in R, then the cofactor formula for the inverse of a matrix (Dummit and Foote 1991,
11.4, Theorem 27) shows thatA−1 also has coefficients4 in R. In more detail, ifA′ is the
transpose of the matrix of cofactors ofA, thenA · A′ = det A · I, and so(det A)−1A′ is

2We are using thatZ is a principal ideal domain.
3An element of a ring isunit if it has an inverse.
4Alternatively, the Cayley-Hamilton theorem provides us with an equation

An + an−1A
n−1 + · · · ± (detA) · I = 0.
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the inverse ofA. It follows that the setGLn(R) of such matrices is a group. For example
GLn(Z) is the group of alln × n matrices with integer coefficients and determinant±1.
WhenR is finite, for example, a finite field, thenGLn(R) is a finite group. Note that
GL1(R) is just the group of units inR — we denote itR×.

(c) If G andH are groups, then we can construct a new groupG×H, called the(direct)
productof G andH. As a set, it is the cartesian product ofG andH, and multiplication is
defined by:

(g, h)(g′, h′) = (gg′, hh′).

(d) A group iscommutative(or abelian) if

ab = ba, all a, b ∈ G.

In a commutative group, the product of any finite (not necessarily ordered) setS of elements
is defined.

Recall5 the classification of finite abelian groups. Every finite abelian group is a product
of cyclic groups. Ifgcd(m, n) = 1, thenCm × Cn contains an element of ordermn,
and soCm × Cn ≈ Cmn, and isomorphisms of this type give the only ambiguities in the
decomposition of a group into a product of cyclic groups.

From this one finds that every finite abelian group is isomorphic to exactly one group
of the following form:

Cn1 × · · · × Cnr , n1|n2, . . . , nr−1|nr.

The order of this group isn1 · · ·nr.
For example, each abelian group of order90 is isomorphic to exactly one ofC90 or

C3 × C30 (note thatnr must be a factor of90 divisible by all the prime factors of90).
(e) Permutation groups. Let S be a set and letG be the setSym(S) of bijections

α : S → S. ThenG becomes a group with the composition lawαβ = α ◦ β. For example,
the permutation group onn letters is Sn = Sym({1, ..., n}), which has ordern!. The

symbol

(
1 2 3 4 5 6 7
2 5 7 4 3 1 6

)
denotes the permutation sending1 7→ 2, 2 7→ 5, 3 7→ 7,

etc..

Subgroups

PROPOSITION1.4. LetG be a group and letS be a nonempty subset ofG such that
(a) a, b ∈ S ⇒ ab ∈ S;
(b) a ∈ S ⇒ a−1 ∈ S.

Then the law of composition onG makesS into a group.

Therefore,
A · (An−1 + an−1A

n−2 + · · · ) = ∓(detA) · I,

and
A ·

(
(An−1 + an−1A

n−2 + · · · ) · (∓detA)−1
)

= I.

5This was taught in an earlier course.
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PROOF. Condition (a) implies that the law of composition onG does define a law of com-
positionS × S → S on S, which is automatically associative. By assumptionS contains
at least one elementa, its inversea−1, and the product1 = aa−1. Finally (b) shows that
inverses exist inS.

A subsetS as in the proposition is called asubgroupof G.
If S is finite, then condition (a) implies (b): leta ∈ S; then{a, a2, . . .} ⊂ S, and soa

has finite order, sayan = 1; now a−1 = an−1 ∈ S. The example(N, +) ⊂ (Z, +) shows
that (a) does not imply (b) whenS is infinite.

PROPOSITION1.5. An intersection of subgroups ofG is a subgroup ofG.

PROOF. It is nonempty because it contains1, and conditions (a) and (b) of (1.4) are obvi-
ous.

REMARK 1.6. It is generally true that an intersection of subobjects of an algebraic object
is a subobject. For example, an intersection of subrings is a subring, an intersection of
submodules is a submodule, and so on.

PROPOSITION 1.7. For any subsetX of a groupG, there is a smallest subgroup ofG
containingX. It consists of all finite products (repetitions allowed) of elements ofX and
their inverses.

PROOF. The intersectionS of all subgroups ofG containingX is again a subgroup con-
tainingX, and it is evidently the smallest such group. ClearlyS contains withX, all finite
products of elements ofX and their inverses. But the set of such products satisfies (a) and
(b) of (1.4) and hence is a subgroup containingX. It therefore equalsS.

We write〈X〉 for the subgroupS in the proposition, and call it thesubgroup generated
byX. For example,〈∅〉 = {1}. If every element ofG has finite order, for example, ifG is
finite, then the set of all finite products of elements ofX is already a group (recall that if
am = 1, thena−1 = am−1) and so equals〈X〉.

We say thatX generatesG if G = 〈X〉, i.e., if every element ofG can be written as a
finite product of elements fromX and their inverses. Note that the order of an elementa
of a group is the order of the subgroup〈a〉 it generates.

EXAMPLE 1.8. (a) A group iscyclic if it is generated by one element, i.e., ifG = 〈σ〉 for
someσ ∈ G. If σ has finite ordern, then

G = {1, σ, σ2, ..., σn−1} ≈ Cn, σi ↔ i mod n,

andG can be thought of as the group of rotational symmetries (about the centre) of a regular
polygon withn-sides. Ifσ has infinite order, then

G = {. . . , σ−i, . . . , σ−1, 1, σ, . . . , σi, . . .} ≈ C∞, σi ↔ i.

In future, we shall (loosely) useCm to denote any cyclic group of orderm (not necessarily
Z/mZ or Z).
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(b) Dihedral group, Dn.6 This is the group of symmetries of a regular polygon withn-
sides. Number the vertices1, . . . , n in the counterclockwise direction. Letσ be the rotation
through2π/n (soi 7→ i + 1 mod n), and letτ be the rotation (=reflection) about the axis
of symmetry through1 and the centre of the polygon (soi 7→ n + 2− i mod n). Then

σn = 1; τ 2 = 1; τστ−1 = σ−1 (or τσ = σn−1τ).

The group has order2n; in fact

Dn = {1, σ, ..., σn−1, τ, ..., σn−1τ}.

(c) Quaternion groupQ: Let a =

(
0

√
−1√

−1 0

)
, b =

(
0 1
−1 0

)
. Then

a4 = 1, a2 = b2, bab−1 = a−1.

The subgroup ofGL2(C) generated bya andb is

Q = {1, a, a2, a3, b, ab, a2b, a3b}.

The groupQ can also be described as the subset{±1,±i,±j,±k} of the quaternion alge-
bra.

(d) Recall thatSn is the permutation group on{1, 2, ..., n}. Thealternating groupAn

is the subgroup of even permutations (see§4 below). It has ordern!
2

.

Groups of small order

Every group of order< 16 is isomorphic to exactly one on the following list:
1: C1. 2: C2. 3: C3.
4: C4, C2 × C2 (Viergruppe; Klein 4-group).
5: C5.
6: C6, S3 = D3 (S3 is the first noncommutative group).
7: C7.
8: C8, C2 × C4, C2 × C2 × C2, Q, D4.
9: C9, C3 × C3.
10: C10, D5.
11: C11.
12: C12, C2 × C6, C2 × S3, A4, C3 o C4 (see 3.13 below).
13: C13.
14: C14, D7.
15: C15.
16: (14 groups)
General rules: For each primep, there is only one group (up to isomorphism), namely

Cp (see 1.17 below), and only two groups of orderp2, namely,Cp ×Cp andCp2 (see 4.17).

6Some authors denote this groupD2n.



1 BASIC DEFINITIONS 9

For the classification of the groups of order6, see 4.21; for order8, see 5.15; for order12,
see 5.14; for orders10, 14, and15, see 5.12.

Roughly speaking, the more high powers of primes dividen, the more groups of order
n you expect. In fact, iff(n) is the number of isomorphism classes of groups of ordern,
then

f(n) ≤ n( 2
27

+o(1))e(n)2

wheree(n) is the largest exponent of a prime dividingn ando(1) → 0 ase(n) → ∞ (see
Pyber, Ann. of Math., 137 (1993) 203–220).

By 2001, a complete irredundant list of groups of order≤ 2000 had been found — up
to isomorphism, there are 49,910,529,484 (Besche, Hans Ulrich; Eick, Bettina; O’Brien,
E. A. The groups of order at most 2000. Electron. Res. Announc. Amer. Math. Soc. 7
(2001), 1–4 (electronic)).

Multiplication tables

A law of composition on a finite set can be described by its multiplication table:

1 a b c . . .
1 1 a b c . . .
a a a2 ab ac . . .
b b ba b2 bc . . .
c c ca cb c2 . . .
...

...
...

...
...

Note that, if the law of composition defines a group, then, because of the cancellation laws,
each row (and each column) is a permutation of the elements of the group.

This suggests an algorithm for finding all groups of a given finite ordern, namely, list
all possible multiplication tables and check the axioms. Except for very smalln, this is
not practical! The table hasn2 positions, and if we allow each position to hold any of
then elements, that gives a total ofnn2

possible tables. Note how few groups there are.
The 864 = 6277 101 735 386 680 763 835 789 423 207 666 416 102 355 444 464 034 512 896
possible multiplication tables for a set with8 elements give only5 isomorphism classes of
groups.

Homomorphisms

DEFINITION 1.9. A homomorphismfrom a groupG to a secondG′ is a mapα : G → G′

such thatα(ab) = α(a)α(b) for all a, b ∈ G.
Note that an isomorphism is simply a bijective homomorphism.

REMARK 1.10. Letα be a homomorphism. Then

α(am) = α(am−1 · a) = α(am−1) · α(a),
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and so, by induction,α(am) = α(a)m, m ≥ 1. Moreoverα(1) = α(1 × 1) = α(1)α(1),
and soα(1) = 1 (apply 1.2a). Also

aa−1 = 1 = a−1a ⇒ α(a)α(a−1) = 1 = α(a−1)α(a),

and soα(a−1) = α(a)−1. From this it follows that

α(am) = α(a)m all m ∈ Z.

We saw above that each row of the multiplication table of a group is a permutation of
the elements of the group. As Cayley pointed out, this allows one to realize the group as a
group of permutations.

THEOREM 1.11 (CAYLEY ). There is a canonical injective homomorphism

α : G → Sym(G).

PROOF. For a ∈ G, defineaL : G → G to be the mapx 7→ ax (left multiplication bya).
Forx ∈ G,

(aL ◦ bL)(x) = aL(bL(x)) = aL(bx) = abx = (ab)L(x),

and so(ab)L = aL ◦ bL. As 1L = id, this implies that

aL ◦ (a−1)L = id = (a−1)L ◦ aL,

and soaL is a bijection, i.e.,aL ∈ Sym(G). Hencea 7→ aL is a homomorphismG →
Sym(G), and it is injective because of the cancellation law.

COROLLARY 1.12. A finite group of ordern can be identified with a subgroup ofSn.

PROOF. Number the elements of the groupa1, . . . , an.

Unfortunately, whenG has large ordern, Sn is too large to be manageable. We shall
see later (4.20) thatG can often be embedded in a permutation group of much smaller order
thann!.

Cosets

Let H be a subgroup ofG. A left cosetof H in G is a set of the form

aH = {ah | h ∈ H},

some fixeda ∈ G; a right cosetis a set of the form

Ha = {ha | h ∈ H},

some fixeda ∈ G.

EXAMPLE 1.13. LetG = R2, regarded as a group under addition, and letH be a subspace
of dimension1 (line through the origin). Then the cosets (left or right) ofH are the lines
parallel toH.
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PROPOSITION1.14. (a) If C is a left coset ofH, anda ∈ C, thenC = aH.
(b) Two left cosets are either disjoint or equal.
(c) aH = bH if and only ifa−1b ∈ H.
(d) Any two left cosets have the same number of elements (possibly infinite).

PROOF. (a) BecauseC is a left coset,C = bH someb ∈ G, and becausea ∈ C, a = bh
for someh ∈ H. Now b = ah−1 ∈ aH, and for any other elementc of C, c = bh′ =
ah−1h′ ∈ aH. Thus,C ⊂ aH. Conversely, ifc ∈ aH, thenc = ah′ = bhh′ ∈ bH.

(b) If C andC ′ are not disjoint, then there is an elementa ∈ C ∩ C ′, andC = aH and
C ′ = aH.

(c) We haveaH = bH ⇐⇒ b ∈ aH ⇐⇒ b = ah, for someh ∈ H, i.e.,
⇐⇒ a−1b ∈ H.

(d) The map(ba−1)L : ah 7→ bh is a bijectionaH → bH.

In particular, the left cosets ofH in G partitionG, and the condition “a andb lie in the
same left coset” is an equivalence relation onG.

The index (G : H) of H in G is defined to be the number of left cosets ofH in G. In
particular,(G : 1) is the order ofG.

Each left coset ofH has(H : 1) elements andG is a disjoint union of the left cosets.
WhenG is finite, we can conclude:

THEOREM 1.15 (LAGRANGE). If G is finite, then

(G : 1) = (G : H)(H : 1).

In particular, the order ofH divides the order ofG.

COROLLARY 1.16. The order of every element of a finite group divides the order of the
group.

PROOF. Apply Lagrange’s theorem toH = 〈g〉, recalling that(H : 1) = order(g).

EXAMPLE 1.17. If G has orderp, a prime, then every element ofG has order1 or p. But
only e has order1, and soG is generated by any elementg 6= e. In particular,G is cyclic,
G ≈ Cp. Hence, up to isomorphism, there is only one group of order1, 000, 000, 007; in
fact there are only two groups of order1, 000, 000, 014, 000, 000, 049.

REMARK 1.18. (a) There is a one-to-one correspondence between the set of left cosets and
the set of right cosets, viz,aH ↔ Ha−1. Hence(G : H) is also the number of right cosets
of H in G. But, in general, a left coset willnot be a right coset (see 1.22 below).

(b) Lagrange’s theorem has a partial converse: if a primep dividesm = (G : 1), then
G has an element of orderp; if pn dividesm, thenG has a subgroup of orderpn (Sylow’s
theorem 5.2). However, note thatC2 × C2 has order4, but has no element of order4, and
A4 has order12, but it has no subgroup of order6 (see Exercise 31).

More generally, we have the following result.

PROPOSITION1.19. Let G be a finite group. IfG ⊃ H ⊃ K with H andK subgroups of
G, then

(G : K) = (G : H)(H : K).
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PROOF. Write G =
⋃

giH (disjoint union), andH =
⋃

hjK (disjoint union). On mul-
tiplying the second equality bygi, we find thatgiH =

⋃
j gihjK (disjoint union), and so

G =
⋃

gihjK (disjoint union).

Normal subgroups

WhenS andT are two subsets of a groupG, we let

ST = {st | s ∈ S, t ∈ T}.

A subgroupN of G is normal, written N C G, if gNg−1 = N for all g ∈ G. An
intersection of normal subgroups of a group is normal (cf. 1.6).

REMARK 1.20. To showN normal, it suffices to check thatgNg−1 ⊂ N for all g, because

gNg−1 ⊂ N ⇒ g−1gNg−1g ⊂ g−1Ng (multiply left and right withg−1 andg);

henceN ⊂ g−1Ng for all g, and, on rewriting this withg−1 for g, we find thatN ⊂ gNg−1

for all g.
The next example shows however that there can exist anN and ag such thatgNg−1 ⊂

N , gNg−1 6= N (famous exercise in Herstein, Topics in Algebra, 2nd Edition, Wiley, 1975,
2.6, Exercise 8).

EXAMPLE 1.21. LetG = GL2(Q), and letH = {( 1 n
0 1 ) | n ∈ Z}. ThenH is a subgroup

of G; in fact it is isomorphic toZ. Let g = ( 5 0
0 1 ). Then

g

(
1 n
0 1

)
g−1 =

(
5 5n
0 1

) (
5−1 0
0 1

)
=

(
1 5n
0 1

)
.

HencegHg−1 ⊂ H, butgHg−1 6= H.

PROPOSITION1.22. A subgroupN of G is normal if and only if each left coset ofN in G
is also a right coset, in which case,gN = Ng for all g ∈ G.

PROOF. ⇒: Multiply the equalitygNg−1 = N on the right byg.
⇐: If gN is a right coset, then it must be the right cosetNg — see (1.14a). Hence

gN = Ng, and sogNg−1 = N . This holds for allg.

REMARK 1.23. In other words, in order forN to be normal, we must have that for all
g ∈ G andn ∈ N , there exists ann′ ∈ N such thatgn = n′g (equivalently, for allg ∈ G
andn ∈ N , there exists ann′ such thatng = gn′.) Thus, an element ofG can be moved
past an element ofN at the cost of replacing the element ofN by a different element ofN .

EXAMPLE 1.24. (a) Every subgroup of index two is normal. Indeed, letg ∈ G, g /∈ H.
ThenG = H ∪ gH (disjoint union). HencegH is the complement ofH in G. The same
argument shows thatHg is the complement ofH in G. HencegH = Hg.

(b) Consider the dihedral groupDn = {1, σ, . . . , σn−1, τ, . . . , σn−1τ}. ThenCn =
{1, σ, . . . , σn−1} has index2, and hence is normal. Forn ≥ 3 the subgroup{1, τ} is not
normal becauseστσ−1 = τσn−2 /∈ {1, τ}.

(c) Every subgroup of a commutative group is normal (obviously), but the converse
is false: the quaternion groupQ is not commutative, but every subgroup is normal (see
Exercise 1).
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A group G is said to besimple if it has no normal subgroups other thanG and{1}.
Such a group can have still lots of nonnormal subgroups — in fact, the Sylow theorems
(§5) imply that every group has nontrivial subgroups unless it is cyclic of prime order.

PROPOSITION1.25. If H andN are subgroups ofG andN is normal, then

HN
df
= {hn | h ∈ H, n ∈ N}

is a subgroup ofG. If H is also normal, thenHN is a normal subgroup ofG.

PROOF. The setHN is nonempty, and

(hn)(h′n′)
1.22
= hh′n′′n′ ∈ HN,

and so it is closed under multiplication. Since

(hn)−1 = n−1h−1 1.22
= h−1n′ ∈ HN

it is also closed under the formation of inverses. If bothH andN are normal, then

gHNg−1 = gHg−1 · gNg−1 = HN

for all g ∈ G.

Quotients

Thekernel of a homomorphismα : G → G′ is

Ker(α) = {g ∈ G| α(g) = 1}.

If α is injective, thenKer(α) = {1}. Conversely, ifKer(α) = 1 thenα is injective, because

α(g) = α(g′) ⇒ α(g−1g′) = 1 ⇒ g−1g′ = 1 ⇒ g = g′.

PROPOSITION1.26. The kernel of a homomorphism is a normal subgroup.

PROOF. It is obviously a subgroup, and ifa ∈ Ker(α), so thatα(a) = 1, andg ∈ G, then

α(gag−1) = α(g)α(a)α(g)−1 = α(g)α(g)−1 = 1.

Hencegag−1 ∈ Ker α.

PROPOSITION 1.27. Every normal subgroup occurs as the kernel of a homomorphism.
More precisely, ifN is a normal subgroup ofG, then there is a natural group structure on
the set of cosets ofN in G (this is if and only if).
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PROOF. Write the cosets as left cosets, and define(aN)(bN) = (ab)N . We have to check
(a) that this is well-defined, and (b) that it gives a group structure on the set of cosets. It
will then be obvious that the mapg 7→ gN is a homomorphism with kernelN .

Check (a). SupposeaN = a′N andbN = b′N ; we have to show thatabN = a′b′N .
But we are given thata = a′n andb = b′n′, somen, n′ ∈ N . Hence

ab = a′nb′n′
1.23
= a′b′n′′n′ ∈ a′b′N .

ThereforeabN anda′b′N have a common element, and so must be equal.
Checking (b) is straightforward: the set is nonempty; the associative law holds; the

cosetN is an identity element;a−1N is an inverse ofaN .

WhenN is a normal subgroup, we writeG/N for the set of left (= right) cosets ofN in
G, regarded as a group. It is called the7 quotientof G byN . The mapa 7→ aN : G → G/N
is a surjective homomorphism with kernelN . It has the following universal property: for
any homomorphismα : G → G′ of groups such thatα(N) = 1, there exists a unique
homomorphismG/N → G′ such that the following diagram commutes:

G
a 7→aN- G/N

@
@

@
α

R

G′.
?

EXAMPLE 1.28. (a) Consider the subgroupmZ of Z. The quotient groupZ/mZ is a cyclic
group of orderm.

(b) LetL be a line through the origin inR2. ThenR2/L is isomorphic toR (because it
is a one-dimensional vector space overR).

(c) The quotientDn/〈σ〉 ≈ {1, τ} (cyclic group of order2).

Exercises 1–4

Exercises marked with an asterisk were required to be handed in.
1*. Show that the quaternion group has only one element of order2, and that it commutes
with all elements ofQ. Deduce thatQ is not isomorphic toD4, and that every subgroup of
Q is normal.

2*. Consider the elements

a =

(
0 −1
1 0

)
b =

(
0 1
−1 −1

)
in GL2(Z). Show thata4 = 1 andb3 = 1, but thatab has infinite order, and hence that the
group〈a, b〉 is infinite.

3*. Show that every finite group of even order contains an element of order2.

4*. Let N be a normal subgroup ofG of indexn. Show that ifg ∈ G, thengn ∈ N . Give
an example to show that this may be false whenN is not normal.

7Some authors say “factor” instead of “quotient”, but this can be confused with “direct factor”.
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2 Free Groups and Presentations

It is frequently useful to describe a group by giving a set of generators for the group and
a set of relations for the generators from which every other relation in the group can be
deduced. For example,Dn can be described as the group with generatorsσ, τ and relations

σn = 1, τ 2 = 1, τστσ = 1.

In this section, we make precise what this means. First we need to define the free group on
a setX of generators — this is a group generated byX and with no relations except for
those implied by the group axioms. Because inverses cause problems, we first do this for
semigroups.

Free semigroups

Recall that (for us) a semigroup is a setG with an associative law of composition having
an identity element1. A homomorphismα : S → S ′ of semigroups is a map such that
α(ab) = α(a)α(b) for all a, b ∈ S andα(1) = 1. Thenα preserves all finite products.

LetX = {a, b, c, . . .} be a (possibly infinite) set of symbols. Aword is a finite sequence
of symbols in which repetition is allowed. For example,

aa, aabac, b

are distinct words. Two words can be multiplied by juxtaposition, for example,

aaaa ∗ aabac = aaaaaabac.

This defines on the setW of all words an associative law of composition. The empty
sequence is allowed, and we denote it by1. (In the unfortunate case that the symbol1 is
already an element ofX, we denote it by a different symbol.) Then1 serves as an identity
element. WriteSX for the set of words together with this law of composition. ThenSX
is a semigroup, called thefree semigrouponX.

When we identify an elementa of X with the worda, X becomes a subset ofSX and
generates it (i.e., there is no proper subsemigroup ofSX containingX). Moreover, the
mapX → SX has the following universal property: for any map (of sets)α : X → S from
X to a semigroupS, there exists a unique homomorphismSX → S making the following
diagram commute:

X - SX

@
@

@α R

S.
?

In fact, the unique extension ofα takes the values:

α(1) = 1S, α(dba · · · ) = α(d)α(b)α(a) · · · .
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Free groups

We want to construct a groupFX containingX and having the same universal property
asSX with “semigroup” replaced by “group”. DefineX ′ to be the set consisting of the
symbols inX and also one additional symbol, denoteda−1, for eacha ∈ X; thus

X ′ = {a, a−1, b, b−1, . . .}.

Let W ′ be the set of words using symbols fromX ′. This becomes a semigroup under
juxtaposition, but it is not a group because we can’t cancel out the obvious terms in words
of the following form:

· · ·xx−1 · · · or · · ·x−1x · · ·
A word is said to bereducedif it contains no pairs of the formxx−1 or x−1x. Starting
with a wordw, we can perform a finite sequence of cancellations to arrive at a reduced
word (possibly empty), which will be called thereduced formof w. There may be many
different ways of performing the cancellations, for example,

cabb−1a−1c−1ca 7→ caa−1c−1ca 7→ cc−1ca 7→ ca :

cabb−1a−1c−1ca 7→ cabb−1a−1a 7→ cabb−1 7→ ca.

We have underlined the pair we are cancelling. Note that the middlea−1 is cancelled with
differenta’s, and that different terms survive in the two cases. Nevertheless we ended up
with the same answer, and the next result says that this always happens.

PROPOSITION2.1. There is only one reduced form of a word.

PROOF. We use induction on the length of the wordw. If w is reduced, there is nothing
to prove. Otherwise a pair of the formxx−1 or x−1x occurs — assume the first, since the
argument is the same in both cases.

Observe that any two reduced forms ofw obtained by a sequence of cancellations in
whichxx−1 is cancelled first are equal, because the induction hypothesis can be applied to
the (shorter) word obtained by cancellingxx−1.

Next observe that any two reduced forms ofw obtained by a sequence of cancellations
in which xx−1 is cancelled at some point are equal, because the result of such a sequence
of cancellations will not be affected ifxx−1 is cancelled first.

Finally, consider a reduced formw0 obtained by a sequence in which no cancellation
cancelsxx−1 directly. Sincexx−1 does not remain inw0, at least one ofx or x−1 must
be cancelled at some point. If the pair itself is not cancelled, then the first cancellation
involving the pair must look like

· · · 6 x−1 6 xx−1 · · · or · · ·x 6 x−1 6 x · · ·

where our original pair is underlined. But the word obtained after this cancellation is the
same as if our original pair were cancelled, and so we may cancel the original pair instead.
Thus we are back in the case just proved.

We say two wordsw, w′ areequivalent, denotedw ∼ w′, if they have the same reduced
form. This is an equivalence relation (obviously).
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PROPOSITION2.2. Products of equivalent words are equivalent, i.e.,

w ∼ w′, v ∼ v′ ⇒ wv ∼ w′v′.

PROOF. Let w0 andv0 be the reduced forms ofw and ofv. To obtain the reduced form
of wv, we can first cancel as much as possible inw andv separately, to obtainw0v0 and
then continue cancelling. Thus the reduced form ofwv is the reduced form ofw0v0. A
similar statement holds forw′v′, but (by assumption) the reduced forms ofw andv equal
the reduced forms ofw′ andv′, and so we obtain the same result in the two cases.

Let FX be the set of equivalence classes of words. The proposition shows that the law
of composition onW ′ defines a law of composition onFX, which obviously makes it into
a semigroup. It also has inverses, because

ab · · · gh · h−1g−1 · · · b−1a−1 ∼ 1.

ThusFX is a group, called thefree groupon X. To summarize: the elements ofFX are
represented by words inX ′; two words represent the same element ofFX if and only if
they have the same reduced forms; multiplication is defined by juxtaposition; the empty
word represents1; inverses are obtained in the obvious way. Alternatively, each element
of FX is represented by a unique reduced word; multiplication is defined by juxtaposition
and passage to the reduced form.

When we identifya ∈ X with the equivalence class of the (reduced) worda, thenX
becomes identified with a subset ofFX — clearly it generatesFX. The next proposition
is a precise statement of the fact that there are no relations among the elements ofX when
regarded as elements ofFX except those imposed by the group axioms.

PROPOSITION2.3. For any map (of sets)X → G from X to a groupG, there exists a
unique homomorphismFX → G making the following diagram commute:

X > FX

@
@

@R

G.
∨

PROOF. Consider a mapα : X → G. We extend it to a map of setsX ′ → G by setting
α(a−1) = α(a)−1. BecauseG is, in particular, a semigroup,α extends to a homomorphism
of semigroupsSX ′ → G. This map will send equivalent words to the same element of
G, and so will factor throughFX = SX ′/∼. The resulting mapFX → G is a group
homomorphism. It is unique because we know it on a set of generators forFX.

REMARK 2.4. The universal property of the mapι : X → FX, x 7→ x, characterizes it:
if ι′ : X → F ′ is a second map with the same universal property, then there is a unique
isomorphismα : FX → F ′ such thatα(ιx) = ι′x for all x ∈ X.

COROLLARY 2.5. Every group is a quotient of a free group.

PROOF. Choose a setX of generators forG (e.g.,X = G), and letF be the free group
generated byX. According to (2.3), the inclusionX ↪→ G extends to a homomorphism
F → G, and the image, being a subgroup containingX, must equalG.
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The free group on the setX = {a} is simply the infinite cyclic groupC∞ generated by
a, but the free group on a set consisting of two elements is already very complicated.

I now discuss, without proof, some important results on free groups.

THEOREM 2.6 (NIELSEN-SCHREIER). 8 Subgroups of free groups are free.
The best proof uses topology, and in particular covering spaces—see Serre, Trees,

Springer, 1980, or Rotman 1995, Theorem 11.44.
Two free groupsFX andFY are isomorphic if and only ifX andY have the same

number of elements9. Thus we can define therank of a free groupG to be the number
of elements in (i.e., cardinality of) a free generating set, i.e., subsetX ⊂ G such that the
homomorphismFX → G given by (2.3) is an isomorphism. LetH be a finitely generated
subgroup of a free groupF . Then there is an algorithm for constructing from any finite set
of generators forH a free finite set of generators. IfF has rankn and(F : H) = i < ∞,
thenH is free of rank

ni− i + 1.

In particular,H may have rank greater than that ofF . For proofs, see Rotman 1995,
Chapter 11, or Hall, M., The Theory of Groups, MacMillan, 1959, Chapter 7.

Generators and relations

As we noted in§1, an intersection of normal subgroups is again a normal subgroup. There-
fore, just as for subgroups, we can define thenormal subgroup generated by a setS in
a groupG to be the intersection of the normal subgroups containingS. Its description in
terms ofS is a little complicated. Call a subsetS of a groupG normal if gSg−1 ⊂ S for
all g ∈ G. Then it is easy to show:

(a) if S is normal, then the subgroup〈S〉 generated10 by it is normal;
(b) for S ⊂ G,

⋃
g∈G gSg−1 is normal, and it is the smallest normal set containingS.

From these observations, it follows that:

LEMMA 2.7. The normal subgroup generated byS ⊂ G is 〈
⋃

g∈G gSg−1〉.
Consider a setX and a setR of words made up of symbols inX ′. Each element of

R represents an element of the free groupFX, and the quotientG of FX by the normal
subgroup generated by these elements is said to haveX asgeneratorsandR asrelations.
One also says that(X, R) is a presentationfor G, G = 〈X|R〉, and thatR is a set of
defining relationsfor G.

EXAMPLE 2.8. (a) The dihedral groupDn has generatorsσ, τ and defining relations

σn, τ 2, τστσ.

(See 2.10 below for a proof.)

8Nielsen (1921) proved this for finitely generated subgroups, and in fact gave an algorithm for deciding
whether a word lies in the subgroup; Schreier (1927) proved the general case.

9By which I mean that there is a bijection from one to the other.
10The map “conjugation byg”, x 7→ gxg−1, is a homomorphismG → G. If x ∈ G can be written

x = a1 · · · am with eachai or its inverse inS, then so also cangxg−1 = (ga1g
−1) · · · (gamg−1).
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(b) Thegeneralized quaternion groupQn, n ≥ 3, has generatorsa, b and relations11

a2n−1
= 1, a2n−2

= b2, bab−1 = a−1. Forn = 3 this is the groupQ of (1.8c). In general, it
has order2n (for more on it, see Exercise 8).

(c) Two elementsa andb in a group commute if and only if theircommutator[a, b] =df

aba−1b−1 is1. Thefree abelian groupon generatorsa1, . . . , an has generatorsa1, a2, . . . , an

and relations
[ai, aj], i 6= j.

For the remaining examples, see Massey, W., Algebraic Topology: An Introduction,
Harbrace, 1967, which contains a good account of the interplay between group theory and
topology. For example, for many types of topological spaces, there is an algorithm for
obtaining a presentation for the fundamental group.

(d) The fundamental group of the open disk with one point removed is the free group
onσ whereσ is any loop around the point (ibid. II 5.1).

(e) The fundamental group of the sphere withr points removed has generatorsσ1, ..., σr

(σi is a loop around theith point) and a single relation

σ1 · · ·σr = 1.

(f) The fundamental group of a compact Riemann surface of genusg has2g generators
u1, v1, ..., ug, vg and a single relation

u1v1u
−1
1 v−1

1 · · ·ugvgu
−1
g v−1

g = 1

(ibid. IV Exercise 5.7).

PROPOSITION2.9. Let G be the group defined by the presentation(X,R). For any group
H and map (of sets)X → H sending each element ofR to 1 (in an obvious sense), there
exists a unique homomorphismG → H making the following diagram commute:

X - G

@
@

@R

H.
?

PROOF. Let α be a mapX → H. From the universal property of free groups (2.3), we
know thatα extends to a homomorphismFX → H, which we again denoteα. Let ιR be
the image ofR in FX. By assumptionιR ⊂ Ker(α), and therefore the normal subgroupN
generated byιR is contained inKer(α). Hence (see p14),α factors throughFX/N = G.
This proves the existence, and the uniqueness follows from the fact that we know the map
on a set of generators forX.

EXAMPLE 2.10. LetG = 〈a, b|an, b2, baba〉. We prove thatG is isomorphic toDn. Be-
cause the elementsσ, τ ∈ Dn satisfy these relations, the map

{a, b} → Dn, a 7→ σ, b 7→ τ

11Strictly speaking, I should say the relationsa2n−1
, a2n−2

b−2, bab−1a.
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extends uniquely to a homomorphismG → Dn. This homomorphism is surjective because
σ and τ generateDn. The relationsan = 1, b2 = 1, ba = an−1b imply that each
element ofG is represented by one of the following elements,1, . . . , an−1, b, ab, . . . , an−1b,
and so(G : 1) ≤ 2n = (Dn : 1). Therefore the homomorphism is bijective (and these
symbols represent distinct elements ofG).

Finitely presented groups

A group is said to befinitely presentedif it admits a presentation(X, R) with bothX and
R finite.

EXAMPLE 2.11. Consider a finite groupG. Let X = G, and letR be the set of words

{abc−1 | ab = c in G}.

I claim that(X, R) is a presentation ofG, and soG is finitely presented. LetG′ = 〈X|R〉.
The mapFX → G, a 7→ a, sends each element ofR to 1, and therefore defines a ho-
momorphismG′ → G, which is obviously surjective. But clearly every element ofG′ is
represented by an element ofX, and so the homomorphism is also injective.

Although it is easy to define a group by a finite presentation, calculating the properties
of the group can be very difficult — note that we are defining the group, which may be
quite small, as the quotient of a huge free group by a huge subgroup. I list some negative
results.

The word problem

Let G be the group defined by a finite presentation(X, R). The word problem forG asks
whether there is an algorithm (decision procedure) for deciding whether a word onX ′

represents1 in G. Unfortunately, the answer is negative: Novikov and Boone showed that
there exist finitely presented groupsG for which there is no such algorithm. Of course,
there do exist other groups for which there is an algorithm.

The same ideas lead to the following result: there does not exist an algorithm that
will determine for an arbitrary finite presentation whether or not the corresponding group
is trivial, finite, abelian, solvable, nilpotent, simple, torsion, torsion-free, free, or has a
solvable word problem.

See Rotman 1995, Chapter 12, for proofs of these statements.

The Burnside problem

A group is said to haveexponentm if gm = 1 for all g ∈ G. It is easy to write down
examples of infinite groups generated by a finite number of elements of finite order (see
Exercise 2), but does there exist an infinite finitely-generated group with a finite exponent?
(Burnside problem). In 1970, Adjan, Novikov, and Britton showed the answer is yes: there
do exist infinite finitely-generated groups of finite exponent.
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Todd-Coxeter algorithm

There are some quite innocuous looking finite presentations that are known to define quite
small groups, but for which this is very difficult to prove. The standard approach to these
questions is to use the Todd-Coxeter algorithm (see§4 below).

In the remainder of this course, including the exercises, we’ll develop various methods
for recognizing groups from their presentations.

Maple

What follows is an annotated transcript of a Maple session:

maple [This starts Maple on a Sun, PC, ....]

with(group); [This loads the group package, and lists
some of the available commands.]

G:=grelgroup({a,b},{[a,a,a,a],[b,b],[b,a,b,a]});
[This defines G to be the group with generators a,b and
relations aaaa, bb, and baba; use 1/a for the inverse of a.]

grouporder(G);
[This attempts to find the order of the group G.]

H:=subgrel({x=[a,a],y=[b]},G);
[This defines H to be the subgroup of G with
generators x=aa and y=b]

pres(H); [This computes a presentation of H]

quit [This exits Maple.]
To get help on a command, type ?command

Exercises 5–12

5*. Prove that the group with generatorsa1, . . . , an and relations[ai, aj] = 1, i 6= j, is the
freeabeliangroup ona1, . . . , an. [Hint: Use universal properties.]

6. Let a andb be elements of an arbitrary free groupF . Prove:
(a) If an = bn with n > 1, thena = b.
(b) If ambn = bnam with mn 6= 0, thenab = ba.
(c) If the equationxn = a has a solutionx for everyn, thena = 1.

7*. Let Fn denote the free group onn generators. Prove:
(a) If n < m, thenFn is isomorphic to both a subgroup and a quotient group ofFm.
(b) Prove thatF1 × F1 is not a free group.
(c) Prove that the centreZ(Fn) = 1 providedn > 1.
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8. Prove thatQn (see 2.8b) has a unique subgroup of order2, which isZ(Qn). Prove that
Qn/Z(Qn) is isomorphic toD2n−1 .

9. (a) LetG = 〈a, b|a2, b2, (ab)4〉. Prove thatG is isomorphic to the dihedral groupD4.
(b) Prove thatG = 〈a, b|a2, abab〉 is an infinite group. (This is usually known as the infinite
dihedral group.)

10. Let G = 〈a, b, c|a3, b3, c4, acac−1, aba−1bc−1b−1〉. Prove thatG is the trivial group{1}.
[Hint: Expand(aba−1)3 = (bcb−1)3.]

11*. Let F be the free group on the set{x, y} and letG = C2, with generatora 6= 1. Let α
be the homomorphismF → G such thatα(x) = a = α(y). Find a minimal generating set
for the kernel ofα. Is the kernel a free group?

12. Let G = 〈s, t|t−1s3t = s5〉. Prove that the element

g = s−1t−1s−1tst−1st

is in the kernel of every map fromG to a finite group.

Coxeter came to Cambridge and gave a lecture [in which he stated a] problem for which
he gave proofs for selected examples, and he asked for a unified proof. I left the lecture
room thinking. As I was walking through Cambridge, suddenly the idea hit me, but it hit
me while I was in the middle of the road. When the idea hit me I stopped and a large truck
ran into me. . . . So I pretended that Coxeter had calculated the difficulty of this problem so
precisely that he knew that I would get the solution just in the middle of the road. . . . Ever
since, I’ve called that theorem “the murder weapon”. One consequence of it is that in a group
if a2 = b3 = c5 = (abc)−1, thenc610 = 1.

John Conway, Mathematical Intelligencer 23 (2001), no. 2, pp8–9.
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3 Isomorphism Theorems. Extensions.

Theorems concerning homomorphisms

The next three theorems (or special cases of them) are often called thefirst, second, and
third isomorphism theoremsrespectively.

Factorization of homomorphisms

Recall that the image of a mapα : S → T is α(S) = {α(s) | s ∈ S}.

THEOREM 3.1 (FUNDAMENTAL THEOREM OF GROUP HOMOMORPHISMS). For any ho-
momorphismα : G → G′ of groups, the kernelN of α is a normal subgroup ofG, the
imageI of α is a subgroup ofG′, andα factors in a natural way into the composite of a
surjection, an isomorphism, and an injection:

G
α

> G′

G/N

onto

∨ ∼=
> I

inj.

∧

PROOF. We have already seen (1.26) that the kernel is a normal subgroup ofG. If b = α(a)
andb′ = α(a′), thenbb′ = α(aa′) andb−1 = α(a−1), and soI =df α(G) is a subgroup of
G′. Forn ∈ N , α(gn) = α(g)α(n) = α(g), and soα is constant on each left cosetgN of
N in G. It therefore defines a map

α : G/N → I, α(gN) = α(g).

Thenα is a homomorphism because

α((gN) · (g′N)) = α(gg′N) = α(gg′) = α(g)α(g′),

and it is certainly surjective. Ifα(gN) = 1, theng ∈ Ker(α) = N , and soα has trivial
kernel. This implies that it is injective (p. 13).

The isomorphism theorem

THEOREM 3.2 (ISOMORPHISMTHEOREM). Let H be a subgroup ofG andN a normal
subgroup ofG. ThenHN is a subgroup ofG, H ∩N is a normal subgroup ofH, and the
map

h(H ∩N) 7→ hN : H/H ∩N → HN/N

is an isomorphism.

PROOF. We have already seen (1.25) thatHN is a subgroup. Consider the map

H → G/N, h 7→ hN.

This is a homomorphism, and its kernel isH ∩ N , which is therefore normal inH. Ac-
cording to Theorem 3.1, it induces an isomorphismH/H ∩ N → I whereI is its image.
But I is the set of cosets of the formhN with h ∈ H, i.e.,I = HN/N .
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The correspondence theorem

The next theorem shows that ifG is a quotient group ofG, then the lattice of subgroups in
G captures the structure of the lattice of subgroups ofG lying over the kernel ofG → G.

THEOREM 3.3 (CORRESPONDENCETHEOREM). Let α : G � G be a surjective homo-
morphism, and letN = Ker(α). Then there is a one-to-one correspondence

{subgroups ofG containingN} 1:1↔ {subgroups ofG}

under which a subgroupH of G containingN corresponds toH = α(H) and a subgroup
H of G corresponds toH = α−1(H). Moreover, ifH ↔ H andH ′ ↔ H

′
, then

(a) H ⊂ H
′ ⇐⇒ H ⊂ H ′, in which case(H

′
: H) = (H ′ : H);

(b) H is normal in G if and only if H is normal in G, in which case,α induces an
isomorphism

G/H
∼=→ G/H.

PROOF. For any subgroupH of G, α−1(H) is a subgroup ofG containingN , and for any
subgroupH of G, α(H) is a subgroup ofG. One verifies easily thatα−1α(H) = H if and
only if H ⊃ N , and thatαα−1(H) = H. Therefore, the two operations give the required
bijection. The remaining statements are easily verified.

COROLLARY 3.4. LetN be a normal subgroup ofG; then there is a one-to-one correspon-
dence between the set of subgroups ofG containingN and the set of subgroups ofG/N ,
H ↔ H/N . MoreoverH is normal inG if and only ifH/N is normal inG/N , in which
case the homomorphismg 7→ gN : G → G/N induces an isomorphism

G/H
∼=→ (G/N)/(H/N).

PROOF. Special case of the theorem in whichα is taken to beg 7→ gN : G → G/N .

Direct products

The next two propositions give criteria for a group to be a direct product of two subgroups.

PROPOSITION3.5. Consider subgroupsH1 andH2 of a groupG. The map

(h1, h2) 7→ h1h2 : H1 ×H2 → G

is an isomorphism of groups if and only if
(a) G = H1H2,
(b) H1 ∩H2 = {1}, and
(c) every element ofH1 commutes with every element ofH2.

PROOF. The conditions are obviously necessary (ifg ∈ H1 ∩ H2, then (g, g−1) 7→ 1,
and so(g, g−1) = (1, 1)). Conversely, (c) implies that the map(h1, h2) 7→ h1h2 is a
homomorphism, and (b) implies that it is injective:

h1h2 = 1 ⇒ h1 = h−1
2 ∈ H1 ∩H2 = {1}.

Finally, (a) implies that it is surjective.
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PROPOSITION3.6. Consider subgroupsH1 andH2 of a groupG. The map

(h1, h2) 7→ h1h2 : H1 ×H2 → G

is an isomorphism of groups if and only if
(a) H1H2 = G,
(b) H1 ∩H2 = {1}, and
(c) H1 andH2 are both normal inG.

PROOF. Again, the conditions are obviously necessary. In order to show that they are
sufficient, we check that they imply the conditions of the previous proposition. For this we
only have to show that each elementh1 of H1 commutes with each elementh2 of H2. But
the commutator[h1, h2] = h1h2h

−1
1 h−1

2 = (h1h2h
−1
1 ) · h−1

2 is in H2 becauseH2 is normal,
and it’s inH1 becauseH1 is normal, and so (b) implies that it is1. Henceh1h2 = h2h1.

PROPOSITION3.7. Consider subgroupsH1, H2, . . . , Hk of a groupG. The map

(h1, h2, . . . , hk) 7→ h1h2 · · ·hk : H1 ×H2 × · · · ×Hk → G

is an isomorphism of groups if (and only if)
(a) G = H1H2 · · ·Hk,
(b) for eachj, Hj ∩ (H1 · · ·Hj−1Hj+1 · · ·Hk) = {1}, and
(c) each ofH1, H2, . . . , Hk is normal inG,

PROOF. For k = 2, this is becomes the preceding proposition. We proceed by induction
on k. The conditions (a,b,c) hold for the subgroupsH1, . . . , Hk−1 of H1 · · ·Hk−1, and so
we may assume that

(h1, h2, . . . , hk−1) 7→ h1h2 · · ·hk−1 : H1 ×H2 × · · · ×Hk−1 → H1H2 · · ·Hk−1

is an isomorphism. An induction argument using (1.25) shows thatH1 · · ·Hk−1 is normal
in G, and so the pairH1 · · ·Hk−1, Hk satisfies the hypotheses of (3.6). Hence

(h, hk) 7→ hhk : (H1 · · ·Hk−1)×Hk → G

is an isomorphism. These isomorphisms can be combined to give the required isomor-
phism:

H1 × · · · ×Hk−1 ×Hk
(h1,...,hk) 7→(h1···hk−1,hk)−−−−−−−−−−−−−−−→ H1 · · ·Hk−1 ×Hk

(h,hk) 7→hhk−−−−−−−→ G.

REMARK 3.8. When

(h1, h2, ..., hk) 7→ h1h2 · · ·hk : H1 ×H2 × · · · ×Hk → G

is an isomorphism we say thatG is thedirect productof its subgroupsHi. In more down-
to-earth terms, this means: each elementg of G can be written uniquely in the formg =
h1h2 · · ·hk, hi ∈ Hi; if g = h1h2 · · ·hk andg′ = h′1h

′
2 · · ·h′k, then

gg′ = (h1h
′
1)(h2h

′
2) · · · (hkh

′
k).
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Automorphisms of groups

Let G be a group. An isomorphismG → G is called anautomorphismof G. The set
Aut(G) of such automorphisms becomes a group under composition: the composite of
two automorphisms is again an automorphism; composition of maps is always associative;
the identity mapg 7→ g is an identity element; an automorphism is a bijection, and therefore
has an inverse, which is again an automorphism.

Forg ∈ G, the mapig “conjugation byg”,

x 7→ gxg−1 : G → G

is an automorphism: it is a homomorphism because

g(xy)g−1 = (gxg−1)(gyg−1), i.e., ig(xy) = ig(x)ig(y),

and it is bijective becauseig−1 is an inverse. An automorphism of this form is called an
inner automorphism, and the remaining automorphisms are said to beouter.

Note that

(gh)x(gh)−1 = g(hxh−1)g−1, i.e.,igh(x) = (ig ◦ ih)(x),

and so the mapg 7→ ig : G → Aut(G) is a homomorphism. Its image is written Inn(G).
Its kernel is thecentreof G,

Z(G) = {g ∈ G | gx = xg all x ∈ G},

and so we obtain from (3.1) an isomorphism

G/Z(G) → Inn(G).

In fact, Inn(G) is a normal subgroup ofAut(G): for g ∈ G andα ∈ Aut(G),

(α ◦ ig ◦ α−1)(x) = α(g · α−1(x) · g−1) = α(g) · x · α(g)−1 = iα(g)(x).

A groupG is said to becompleteif the mapg 7→ ig : G → Aut(G) is an isomorphism.
Note that this is equivalent to the condition:

(a) the centreZ(G) of G is trivial, and
(b) every automorphism ofG is inner.

EXAMPLE 3.9. (a) Forn 6= 2, 6, Sn is complete. The groupS2 is commutative and hence
fails (a);Aut(S6)/Inn(S6) ≈ C2, and henceS6 fails (b). See Rotman 1995, Theorems 7.5,
7.10.

(b) Let G = Fn
p . The automorphisms ofG as an abelian group are just the automor-

phisms ofG as a vector space overFp; thusAut(G) = GLn(Fp). BecauseG is commuta-
tive, all nontrivial automorphisms ofG are outer.

(c) As a particular case of (b), we see that

Aut(C2 × C2) = GL2(F2).
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But GL2 (F2) ≈ S3 (see Exercise 16), and so the nonisomorphic groupsC2 × C2 andS3

have isomorphic automorphism groups.
(d) Let G be a cyclic group of ordern, sayG = 〈g〉. An automorphismα of G must

sendg to another generator ofG. Let m be an integer≥ 1. The smallest multiple ofm
divisible byn is m · n

gcd(m,n)
. Therefore,gm has order n

gcd(m,n)
, and so the generators ofG

are the elementsgm with gcd(m,n) = 1. Thusα(g) = gm for somem relatively prime to
n, and in fact the mapα 7→ m defines an isomorphism

Aut(Cn) → (Z/nZ)×

where

(Z/nZ)× = {units in the ringZ/nZ} = {m + nZ | gcd(m,n) = 1}.

This isomorphism is independent of the choice of a generatorg for G; in fact, if α(g) = gm,
then for any other elementg′ = gi of G,

α(g′) = α(gi) = α(g)i = gmi = (gi)m = (g′)m.

(e) Since the centre of the quaternion groupQ is 〈a2〉, we have that

Inn(Q) ∼= Q/〈a2〉 ≈ C2 × C2.

In fact,Aut(Q) ≈ S4. See Exercise 17.
(f) If G is a simple noncommutative group, thenAut(G) is complete. See Rotman

1995, Theorem 7.14.

REMARK 3.10. It will be useful to have a description of(Z/nZ)× = Aut(Cn). If n =
pr1

1 · · · prs
s is the factorization ofn into powers of distinct primes, then the Chinese Remain-

der Theorem (Dummit and Foote 1991, 7.6, Theorem 17) gives us an isomorphism

Z/nZ ∼= Z/pr1
1 Z× · · · × Z/prs

s Z, m mod n 7→ (m mod pr1
1 , . . . ,m mod prs

s ),

which induces an isomorphism

(Z/nZ)× ≈ (Z/pr1
1 Z)× × · · · × (Z/prs

s Z)×.

Hence we need only consider the casen = pr, p prime.
Suppose first thatp is odd. The set{0, 1, . . . , pr−1} is a complete set of representatives

for Z/prZ, and1
p

of these elements are divisible byp. Hence(Z/prZ)× has orderpr− pr

p
=

pr−1(p−1). Becausep−1 andpr are relatively prime, we know from (1.3d) that(Z/prZ)×

is isomorphic to the direct product of a groupA of orderp−1 and a groupB of orderpr−1.
The map

(Z/prZ)× � (Z/pZ)× = F×p ,

induces an isomorphismA → F×p , andF×p , being a finite subgroup of the multiplicative
group of a field, is cyclic (FT, Exercise 3). Thus(Z/prZ)× ⊃ A = 〈ζ〉 for some elementζ
of orderp−1. Using the binomial theorem, one finds that1+p has orderpr−1 in (Z/prZ)×,
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and therefore generatesB. Thus(Z/prZ)× is cyclic, with generatorζ · (1 + p), and every
element can be written uniquely in the form

ζ i · (1 + p)j, 0 ≤ i < p− 1, 0 ≤ j < pr−1.

On the other hand,

(Z/8Z)× = {1, 3, 5, 7} = 〈3, 5〉 ≈ C2 × C2

is not cyclic. The situation can be summarized by:

(Z/prZ)× ≈


C(p−1)pr−1 p odd,

C2 pr = 22

C2 × C2r−2 p = 2, r > 2.

See Dummit and Foote 1991, 9.5, Corollary 20 for more details.

DEFINITION 3.11. A characteristic subgroupof a groupG is a subgroupH such that
α(H) = H for all automorphismsα of G.

The same argument as in (1.20) shows that it suffices to check thatα(H) ⊂ H for all
α ∈ Aut(G).

Contrast: a subgroupH of G is normal if it is stable under all inner automorphisms
of G; it is characteristic if it stable under all automorphisms. In particular, a characteristic
subgroup is normal.

REMARK 3.12. (a) Consider a groupG and a normal subgroupH. An inner automorphism
of G restricts to an automorphism ofH, which may be outer (for an example, see 3.16f).
Thus a normal subgroup ofH need not be a normal subgroup ofG. However, a character-
istic subgroup ofH will be a normal subgroup ofG. Also a characteristic subgroup of a
characteristic subgroup is a characteristic subgroup.

(b) The centreZ(G) of G is a characteristic subgroup, because

zg = gz all g ∈ G ⇒ α(z)α(g) = α(g)α(z) all g ∈ G,

and asg runs overG, α(g) also runs overG. Expect subgroups with a general group-
theoretic definition to be characteristic.

(c) If H is the only subgroup ofG of orderm, then it must be characteristic, because
α(H) is again a subgroup ofG of orderm.

(d) Every subgroup of a commutative group is normal but not necessarily characteristic.
For example, a subspace of dimension1 in G = F2

p will not be stable underGL2(Fp) and
hence is not a characteristic subgroup.

Semidirect products

Let N be a normal subgroup ofG. Each elementg of G defines an automorphism ofN ,
n 7→ gng−1, and so we have a homomorphism

θ : G → Aut(N).
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If there exists a subgroupQ of G such thatG → G/N mapsQ isomorphically ontoG/N ,
then I claim that we can reconstructG from the triple(N, Q, θ|Q). Indeed, anyg ∈ G can
be written in a unique fashion

g = nq, n ∈ N, q ∈ Q

— q is the unique element ofQ representingg in G/N , andn = gq−1. Thus, we have a
one-to-one correspondence (of sets)

G
1−1↔ N ×Q.

If g = nq andg′ = n′q′, then

gg′ = nqn′q′ = n(qn′q−1)qq′ = n · θ(q)(n′) · qq′.

DEFINITION 3.13. A groupG is said to be asemidirect productof the subgroupsN and
Q, written N o Q, if N is normal andG → G/N induces an isomorphismQ

≈→ G/N .
Equivalent condition:N andQ are subgroups ofG such that

(i) N C G; (ii) NQ = G; (iii) N ∩Q = {1}.

Note thatQ neednot be a normal subgroup ofG.

EXAMPLE 3.14. (a) InDn, let Cn = 〈σ〉 andC2 = 〈τ〉; then

Dn = 〈σ〉o 〈τ〉 = Cn o C2.

(b) The alternating subgroupAn is a normal subgroup ofSn (because it has index2),
andQ = {(12)} ≈→ Sn/An. ThereforeSn = An o C2.

(c) The quaternion group can not be written as a semidirect product in any nontrivial
fashion (see Exercise 14).

(d) A cyclic group of orderp2, p prime, is not a semidirect product.
(e) Let G = GLn(k), the group of invertiblen × n matrices with coefficients in the

field k. Let B be the subgroup of upper triangular matrices inG, T the subgroup of di-
agonal matrices inG, andU subgroup of upper triangular matrices with all their diagonal
coefficients equal to1. Thus, whenn = 2,

B =

{(
∗ ∗
0 ∗

)}
, T =

{(
∗ 0
0 ∗

)}
, U =

{(
1 ∗
0 1

)}
.

Then,U is a normal subgroup ofB, UT = B, andU ∩ T = {1}. Therefore,

B = U o T .

Note that, whenn ≥ 2, the action ofT onU is not trivial, and soB is not the direct product
of T andU .
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We have seen that, from a semidirect productG = N o Q, we obtain a triple

(N, Q, θ : Q → Aut(N)).

We now prove that every triple(N, Q, θ) consisting of two groupsN andQ and a homo-
morphismθ : Q → Aut(N) arises from a semidirect product. As a set, letG = N × Q,
and define

(n, q)(n′, q′) = (n · θ(q)(n′), qq′).

PROPOSITION3.15. The above composition law makesG into a group, in fact, the semidi-
rect product ofN andQ.

PROOF. Write qn for θ(q)(n), so that the composition law becomes

(n, q)(n′, q′) = (n · qn′, qq′).

Then

((n, q), (n′, q′))(n′′, q′′) = (n · qn′ · qq′n′′, qq′q′′) = (n, q)((n′, q′)(n′′, q′′))

and so the associative law holds. Becauseθ(1) = 1 andθ(q)(1) = 1,

(1, 1)(n, q) = (n, q) = (n, q)(1, 1),

and so(1, 1) is an identity element. Next

(n, q)(q−1

n, q−1) = (1, 1) = (q−1

n, q−1)(n, q),

and so(q−1
n, q−1) is an inverse for(n, q). ThusG is a group, and it easy to check that it

satisfies the conditions (i,ii,iii) of (3.13).

Write G = N oθ Q for the above group.

EXAMPLE 3.16. (a) Letθ be the (unique) nontrivial homomorphism

C4 → Aut(C3) ∼= C2,

namely, that which sends a generator ofC4 to the mapa 7→ a2. ThenG =df C3 oθ C4 is
a noncommutative group of order12, not isomorphic toA4. If we denote the generators of
C3 andC4 by a andb, thena andb generateG, and have the defining relations

a3 = 1, b4 = 1, bab−1 = a2.

(b) The bijection
(n, q) 7→ (n, q) : N ×Q → N oθ Q

is an isomorphism of groups if and only ifθ is the trivial homomorphismQ → Aut(N),
i.e.,θ(q)(n) = n for all q ∈ Q, b ∈ N .

(c) BothS3 andC6 are semidirect products ofC3 by C2 — they correspond to the two
homomorphismsC2 → C2

∼= Aut(C3).
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(d) Let N = 〈a, b〉 be the product of two cyclic groups〈a〉 and〈b〉 of orderp, and let
Q = 〈c〉 be a cyclic group of orderp. Defineθ : Q → Aut(N) to be the homomorphism
such that

θ(ci)(a) = abi, θ(ci)(b) = b.

[If we regardN as the additive groupN = F2
p with a andb the standard basis elements, then

θ(ci) is the automorphism ofN defined by the matrix

(
1 0
i 1

)
.] The groupG =df NoθQ

is a group of orderp3, with generatorsa, b, c and defining relations

ap = bp = cp = 1, ab = cac−1, [b, a] = 1 = [b, c].

Becauseb 6= 1, the group is not commutative. Whenp is odd, all elements except1 have
orderp. Whenp = 2, G ≈ D4. Note that this shows that a group can have quite different
representations as a semidirect product:

D4
3.14a
≈ C4 o C2 ≈ (C2 × C2) o C2.

(e) Let N = 〈a〉 be cyclic of orderp2, and letQ = 〈b〉 be cyclic of orderp, where
p is an odd prime. ThenAut N ≈ Cp−1 × Cp (see 3.10), and the generator ofCp is α
whereα(a) = a1+p (henceα2(a) = a1+2p, . . .). DefineQ → Aut N by b 7→ α. The group
G =df N oθ Q has generatorsa, b and defining relations

ap2

= 1, bp = 1, bab−1 = a1+p.

It is a nonabelian group of orderp3, and possesses an element of orderp2.
For an odd primep, the groups constructed in (d) and (e) are the only nonabelian groups

of orderp3 (see Exercise 21).
(f) Let α be an automorphism, possibly outer, of a groupN . We can realizeN as

a normal subgroup of a groupG in such a way thatα becomes the restriction toN of
an inner automorphism ofG. To see this, letθ : C∞ → Aut(N) be the homomorphism
sending a generatora of C∞ to α ∈ Aut(N), and letG = N oθ C∞. Then the element
g = (1, a) of G has the property thatg(n, 1)g−1 = (α(n), 1) for all n ∈ N .

The semidirect productN oθ Q is determined by the triple

(N, Q, θ : Q → Aut(N)).

It will be useful to have criteria for when two triples(N, Q, θ) and(N, Q, θ′) determine
isomorphic groups.

LEMMA 3.17. If θ andθ′ are conjugate, i.e., there exists anα ∈ Aut(N) such thatθ′(q) =
α ◦ θ(q) ◦ α−1 for all q ∈ Q, then

N oθ Q ≈ N oθ′ Q.

PROOF. Consider the map

γ : N oθ Q → N oθ′ Q, (n, q) 7→ (α(n), q).
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Then

γ(n, q) · γ(n′, q′) = (α(n), q) · (α(n′), q′)

= (α(n) · θ′(q)(α(n′)), qq′)

= (α(n) · (α ◦ θ(q) ◦ α−1)(α(n′)), qq′)

= (α(n) · α(θ(q)(n′)), qq′),

and

γ((n, q) · (n′, q′)) = γ(n · θ(q)(n′), qq′)
= (α(n) · α (θ(q)(n′)) , qq′).

Thereforeγ is a homomorphism, with inverse(n, q) 7→ (α−1(n), q), and so is an isomor-
phism.

LEMMA 3.18. If θ = θ′ ◦ α with α ∈ Aut(Q), then

N oθ Q ≈ N oθ′ Q.

PROOF. The map(n, q) 7→ (n, α(q)) is an isomorphismN oθ Q → N oθ′ Q.

LEMMA 3.19. If Q is cyclic and the subgroupθ(Q) of Aut(N) is conjugate toθ′(Q), then

N oθ Q ≈ N oθ′ Q.

PROOF. Let a generateQ. Then there exists ani and anα ∈ Aut(N) such that

θ′(ai) = α · θ(a) · α−1.

The map(n, q) 7→ (α(n), qi) is an isomorphismN oθ Q → N oθ′ Q.

Extensions of groups

A sequence of groups and homomorphisms

1 → N
ι→ G

π→ Q → 1

is exact if ι is injective, π is surjective, andKer(π) = Im(ι). Thus ι(N) is a normal
subgroup ofG (isomorphic byι to N) andG/ι(N)

≈→ Q. We often identifyN with the
subgroupι(N) of G andQ with the quotientG/N.

An exact sequence as above is also referred to as anextension ofQ byN . An extension
is central if ι(N) ⊂ Z(G). For example,

1 → N → N oθ Q → Q → 1

is an extension ofN by Q, which is central if (and only if)θ is the trivial homomorphism.
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Two extensions ofQ by N are said to beisomorphicif there is a commutative diagram

1 −−−→ N −−−→ G −−−→ Q −−−→ 1∥∥∥ y≈ ∥∥∥
1 −−−→ N −−−→ G′ −−−→ Q −−−→ 1.

An extension
1 → N

ι→ G
π→ Q → 1

is said to besplit if it isomorphic to a semidirect product. Equivalent conditions:
(a) there exists a subgroupQ′ ⊂ G such thatπ induces an isomorphismQ′ → Q; or
(b) there exists a homomorphisms : Q → G such thatπ ◦ s = id .

In general, an extension will not split. For example (cf. 3.14c,d), the extensions

1 → N → Q → Q/N → 1

(N any subgroup of order4 in the quaternion groupQ) and

1 → Cp → Cp2 → Cp → 1

do not split. We list two criteria for an extension to split.

PROPOSITION3.20 (SCHUR-ZASSENHAUSLEMMA ). An extension of finite groups of rel-
atively prime order is split.

PROOF. Rotman 1995, 7.41.

PROPOSITION3.21. Let N be a normal subgroup of a groupG. If N is complete, thenG
is the direct product ofN with the centralizer ofN in G,

CG(N)
df
= {g ∈ G | gn = ng all n ∈ N}.

PROOF. Let Q = CG(N). We shall check thatN andQ satisfy the conditions of Proposi-
tion 3.6.

Observe first that, for anyg ∈ G, n 7→ gng−1 : N → N is an automorphism ofN ,
and (becauseN is complete), it must be the inner automorphism defined by an element
γ = γ(g) of N ; thus

gng−1 = γnγ−1 all n ∈ N .

This equation shows thatγ−1g ∈ Q, and henceg = γ(γ−1g) ∈ NQ. Sinceg was arbitrary,
we have shown thatG = NQ.

Next note that every element ofN∩Q is in the centre ofN , which (by the completeness
assumption) is trivial; henceN ∩Q = 1.

Finally, for any elementg = nq ∈ G,

gQg−1 = n(qQq−1)n−1 = nQn−1 = Q

(recall that every element ofN commutes with every element ofQ). ThereforeQ is normal
in G.
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An extension
1 → N → G → Q → 1

gives rise to a homomorphismθ′ : G → Aut(N), namely,

θ′(g)(n) = gng−1.

Let q̃ ∈ G map toq in Q; then the image ofθ′(q̃) in Aut(N)/Inn(N) depends only onq;
therefore we get a homomorphism

θ : Q → Out(N)
df
= Aut(N)/Inn(N).

This mapθ depends only on the isomorphism class of the extension, and we writeExt1(G, N)θ

for the set of isomorphism classes of extensions with a givenθ. These sets have been ex-
tensively studied.

The Hölder program.

Recall that a groupG is simple if it contains no normal subgroup except1 andG. In other
words, a group is simple if it can’t be realized as an extension of smaller groups. Every
finite group can be obtained by taking repeated extensions of simple groups. Thus the
simple finite groups can be regarded as the basic building blocks for all finite groups.

The problem of classifying all simple groups falls into two parts:
A. Classify all finite simple groups;
B. Classify all extensions of finite groups.
Part A has been solved: there is a complete list of finite simple groups. They are the

cyclic groups of prime order, the alternating groupsAn for n ≥ 5 (see the next section),
certain infinite families of matrix groups, and the26 “sporadic groups”. As an example of
a matrix group, consider

SLn(Fq) =df {m×m matricesA with entries inFq such thatdet A = 1}.

Hereq = pn, p prime, andFq is “the” field with q elements (see FT, Proposition 4.15).

This group may not be simple, because the scalar matrices

 ζ 0 ··· 0
0 ζ 0

...
0 0 ··· ζ

, ζm = 1, are in the

centre. But these are the only matrices in centre, and the groups

PSLm(Fq)
df
= SLn(Fq)/{centre}

are simple whenm ≥ 3 (Rotman 1995, 8.23) and whenm = 2 andq > 3 (ibid. 8.13). For
the casem = 3 andq = 2, see Exercise 24 (note thatPSL3(F2) ∼= GL3(F2)).

There are many results on Part B, and at least one expert has told me he considers it
solved, but I’m sceptical.

For an historical introduction to the classification of finite simple groups, see Solomon, Ronald, A brief

history of the classification of the finite simple groups, Bulletin AMS, 38 (2001), pp. 315–352. He notes

(p347) regarding (B): “. . . the classification of all finite groups is completely infeasible. Nevertheless experi-

ence shows that most of the finite groups which occur in “nature” . . . are “close” either to simple groups or to

groups such as dihedral groups, Heisenberg groups, etc., which arise naturally in the study of simple groups.”
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Exercises 13–19

13. Let Dn = 〈a, b|an, b2, abab〉 be thenth dihedral group. Ifn is odd, prove thatD2n ≈
〈an〉 × 〈a2, b〉, and hence thatD2n ≈ C2 ×Dn.

14*. Let G be the quaternion group (1.8c). Prove thatG can’t be written as a semidirect
product in any nontrivial fashion.

15*. Let G be a group of ordermn wherem andn have no common factor. IfG contains
exactly one subgroupM of orderm and exactly one subgroupN of ordern, prove thatG
is the direct product ofM andN .

16*. Prove thatGL2(F2) ≈ S3.

17. Let G be the quaternion group (1.8c). Prove thatAut(G) ≈ S4.

18*. Let G be the set of all matrices inGL3(R) of the form
(

a 0 b
0 a c
0 0 d

)
, ad 6= 0. Check that

G is a subgroup ofGL3(R), and prove that it is a semidirect product ofR2 (additive group)
by R× × R×. Is it a direct product of these two groups?

19. Find the automorphism groups ofC∞ andS3.



4 GROUPS ACTING ON SETS 36

4 Groups Acting on Sets

General definitions and results

DEFINITION 4.1. LetX be a set and letG be a group. Aleft actionof G onX is a mapping
(g, x) 7→ gx : G×X → X such that

(a) 1x = x, for all x ∈ X;
(b) (g1g2)x = g1(g2x), all g1, g2 ∈ G, x ∈ X.

A set together with a (left) action ofG is called a (left)G-set.
The axioms imply that, for eachg ∈ G, left translation byg,

gL : X → X, x 7→ gx,

has(g−1)L as an inverse, and thereforegL is a bijection, i.e.,gL ∈ Sym(X). Axiom (b)
now says that

g 7→ gL : G → Sym(X)

is a homomorphism. Thus, from a left action ofG on X, we obtain a homomorphism
G → Sym(X), and, conversely, every such homomorphism defines an action ofG onX.

EXAMPLE 4.2. (a) The symmetric groupSn acts on{1, 2, ..., n}. Every subgroupH of Sn

acts on{1, 2, . . . , n}.
(b) Every subgroupH of a groupG acts onG by left translation,

H ×G → G, (h, x) 7→ hx.

(c) LetH be a subgroup ofG. If C is a left coset ofH in G, then so also isgC for any
g ∈ G. In this way, we get an action ofG on the set of left cosets:

G×G/H → G/H, (g, C) 7→ gC.

(d) Every groupG acts on itself by conjugation:

G×G → G, (g, x) 7→ gx =df gxg−1.

For any normal subgroupN , G acts onN andG/N by conjugation.
(e) For any groupG, Aut(G) acts onG.
A right action X×G → G is defined similarly. To turn a right action into a left action,

setg ∗ x = xg−1. For example, there is a natural right action ofG on the set of right
cosets of a subgroupH in G, namely,(C, g) 7→ Cg, which can be turned into a left action
(g, C) 7→ Cg−1.

A morphismof G-sets (betterG-map; G-equivariant map) is a mapϕ : X → Y such
that

ϕ(gx) = gϕ(x), all g ∈ G, x ∈ X.

An isomorphismof G-sets is a bijectiveG-map; its inverse is then also aG-map.
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Orbits

Let G act onX. A subsetS ⊂ X is said to bestableunder the action ofG if

g ∈ G, x ∈ S ⇒ gx ∈ S.

The action ofG onX then induces an action ofG onS.
Write x ∼G y if y = gx, someg ∈ G. This relation is reflexive becausex = 1x,

symmetric because
y = gx ⇒ x = g−1y

(multiply by g−1 on the left and use the axioms), and transitive because

y = gx, z = g′y ⇒ z = g′(gx) = (g′g)x.

It is therefore an equivalence relation. The equivalence classes are calledG-orbits. Thus
theG-orbits partitionX. Write G\X for the set of orbits.

By definition, theG-orbit containingx0 is

Gx0 = {gx0 | g ∈ G}.
It is the smallestG-stable subset ofX containingx0.

EXAMPLE 4.3. (a) SupposeG acts onX, and letα ∈ G be an element of ordern. Then
the orbits of〈α〉 are the sets of the form

{x0, αx0, . . . , α
n−1x0}.

(These elements need not be distinct, and so the set may contain fewer thann elements.)
(b) The orbits for a subgroupH of G acting onG by left multiplication are the right

cosets ofH in G. We writeH\G for the set of right cosets. Similarly, the orbits forH
acting by right multiplication are the left cosets, and we writeG/H for the set of left cosets.
Note that the group law onG will not induce a group law onG/H unlessH is normal.

(c) For a groupG acting on itself by conjugation, the orbits are calledconjugacy
classes:for x ∈ G, the conjugacy class ofx is the set

{gxg−1 | g ∈ G}
of conjugates ofx. The conjugacy class ofx0 consists only ofx0 if and only if x0 is in the
centre ofG. In linear algebra the conjugacy classes inG = GLn(k) are called similarity
classes, and the theory of (rational) Jordan canonical forms provides a set of representatives
for the conjugacy classes: two matrices are similar (conjugate) if and only if they have
essentially the same Jordan canonical form.

Note that a subset ofX is stable if and only if it is a union of orbits. For example, a
subgroupH of G is normal if and only if it is a union of conjugacy classes.

The groupG is said to acttransitivelyon X if there is only one orbit, i.e., for any two
elementsx andy of X, there exists ag ∈ G such thatgx = y.

For example,Sn acts transitively on{1, 2, ...n}. For any subgroupH of a groupG, G
acts transitively onG/H. But G (almost) never acts transitively onG (or G/N or N) by
conjugation.

The groupG actsdoubly transitivelyon X if for any two pairs(x, x′), (y, y′) of ele-
ments ofX with x 6= x′ andy 6= y′, there exists a (single)g ∈ G such thatgx = y and
gx′ = y′. Definek-fold transitivity, k ≥ 3, similarly.
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Stabilizers

Thestabilizer(or isotropy group) of an elementx ∈ X is

Stab(x) = {g ∈ G | gx = x}.

It is a subgroup, but it need not be a normal subgroup. In fact:

LEMMA 4.4. If y = gx, thenStab(y) = g · Stab(x) · g−1.

PROOF. Certainly, ifg′x = x, then

(gg′g−1)y = gg′x = gx = y.

HenceStab(y) ⊃ g · Stab(x) · g−1. Conversely, ifg′y = y, then

(g−1g′g)x = g−1g′(y) = g−1y = x,

and sog−1g′g ∈ Stab(x), i.e.,g′ ∈ g · Stab(x) · g−1.

Clearly ⋂
x∈X

Stab(x) = Ker(G → Sym(X)),

which is a normal subgroup ofG. If
⋂

Stab(x) = {1}, i.e., G ↪→ Sym(X), thenG is
said to acteffectively(or faithfully ). It actsfreely if Stab(x) = 1 for all x ∈ X, i.e., if
gx = x ⇒ g = 1.

EXAMPLE 4.5. (a) LetG act onG by conjugation. Then

Stab(x) = {g ∈ G | gx = xg}.

This group is called thecentralizerCG(x) of x in G. It consists of all elements ofG that
commute with, i.e., centralize,x. The intersection⋂

x∈X

CG(x) = {g ∈ G | gx = xg ∀x ∈ G}

is a normal subgroup ofG, called thecentreZ(G) of G. It consists of the elements ofG
that commute with every element ofG.

(b) LetG act onG/H by left multiplication. ThenStab(H) = H, and the stabilizer of
gH is gHg−1.

For a subsetS of X, we define thestabilizerof S to be

Stab(S) = {g ∈ G | gS = S}.

The same argument as in the proof of (4.4) shows that

Stab(gS) = g · Stab(S) · g−1.

EXAMPLE 4.6. LetG act onG by conjugation, and letH be a subgroup ofG. The stabilizer
of H is called thenormalizerNG(H) of H in G:

NG(H) = {g ∈ G | gHg−1 = H}.

ClearlyNG(H) is the largest subgroup ofG containingH as a normal subgroup.

ASIDE. In Example 1.21, the elementg /∈ NG(H) even thoughgHg−1 ⊂ H.
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Transitive actions

PROPOSITION4.7. SupposeG acts transitively onX, and letx0 ∈ X; then

gH 7→ gx0 : G/ Stab(x0) → X

is an isomorphism ofG-sets.

PROOF. It is well-defined because ifh, h′ ∈ Stab(x0), thenghx0 = gx0 = gh′x0 for any
g ∈ G. It is injective because

gx0 = g′x0 ⇒ g−1g′x0 = x0 ⇒ g, g′ lie in the same left coset ofStab(x0).

It is surjective becauseG acts transitively. Finally, it is obviouslyG-equivariant.

The isomorphism isnot canonical: it depends on the choice ofx0 ∈ X. Thus to give a
transitive action ofG on a setX is not the same as to give a subgroup ofG.

COROLLARY 4.8. Let G act onX, and letO = Gx0 be the orbit containingx0. Then the
number of elements inO is

#O = (G : Stab(x0)).

For example, the number of conjugatesgHg−1 of a subgroupH of G is (G : NG(H)).

PROOF. The action ofG onO is transitive, and sog 7→ gx0 defines a bijectionG/ Stab(x0) →
Gx0.

This equation is frequently useful for computing#O.

PROPOSITION4.9. If G acts transitively onX, then, for anyx0 ∈ X,

Ker(G → Sym(X))

is the largest normal subgroup contained inStab(x0).

PROOF. Let x0 ∈ X. Then

Ker(G → Sym(X)) =
⋂
x∈X

Stab(x) =
⋂
g∈G

Stab(gx0)
4.4
=

⋂
g · Stab(x0) · g−1.

Hence, the proposition is a consequence of the following lemma.

LEMMA 4.10. For any subgroupH of a groupG,
⋂

g∈G gHg−1 is the largest normal sub-
group contained inH.

PROOF. Note thatN0 =df

⋂
g∈G gHg−1, being an intersection of subgroups, is itself a

subgroup. It is normal because

g1N0g
−1
1 =

⋂
g∈G

(g1g)N0(g1g)−1 = N0
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— for the second equality, we used that, asg runs over the elements ofG, so also doesg1g.
ThusN0 is a normal subgroup ofG contained in1H1−1 = H. If N is a second such group,
then

N = gNg−1 ⊂ gHg−1

for all g ∈ G, and so
N ⊂

⋂
g∈G

gHg−1 = N0.

The class equation

WhenX is finite, it is a disjoint union of a finite number of orbits:

X =
m⋃

i=1

Oi (disjoint union).

Hence:

PROPOSITION4.11. The number of elements inX is

#X =
m∑

i=1

#Oi =
m∑

i=1

(G : Stab(xi)), xi in Oi.

WhenG acts on itself by conjugation, this formula becomes:

PROPOSITION4.12 (CLASS EQUATION).

(G : 1) =
∑

(G : CG(x))

(x runs over a set of representatives for the conjugacy classes), or

(G : 1) = (Z(G) : 1) +
∑

(G : CG(y))

(y runs over set of representatives for the conjugacy classes containing more than one
element).

THEOREM 4.13 (CAUCHY). If the primep divides(G : 1), thenG contains an element of
orderp.

PROOF. We use induction on(G : 1). If for somey not in the centre ofG, p does not
divide (G : CG(y)), thenp|CG(y) and we can apply induction to find an element of order
p in CG(y). Thus we may suppose thatp divides all of the terms(G : CG(y)) in the
class equation (second form), and so also dividesZ(G). But Z(G) is commutative, and it
follows from the structure theorem12 of such groups thatZ(G) will contain an element of
orderp.

12Here is a direct proof that the theorem holds for an abelian groupZ. We use induction on the order of
Z. It suffices to show thatZ contains an element whose order is divisible byp, for then some power of the
element will have order exactlyp. Let g 6= 1 be an element ofZ. Eitherp divides the order ofg, or (by
induction) there is an element ofh of Z whose order inZ/〈g〉 is divisible byp. In the second case, the order
of h itself must be divisible byp.
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COROLLARY 4.14. Any group of order2p, p an odd prime, is cyclic or dihedral.

PROOF. From Cauchy’s theorem, we know that such aG contains elementsτ andσ of
orders 2 andp respectively. LetH = 〈σ〉. ThenH is of index 2, and so is normal.
Obviouslyτ /∈ H, and soG = H ∪Hτ :

G = {1, σ, . . . , σp−1, τ, στ, . . . , σp−1τ}.

AsH is normal,τστ−1 = σi, somei. Becauseτ 2 = 1, σ = τ 2στ−2 = τ(τστ−1)τ−1 = σi2 ,
and soi2 ≡ 1 modp. The only elements ofFp with square1 are±1, and soi ≡ 1 or−1 mod
p. In the first case, the group is commutative (any group generated by a set of commuting
elements is obviously commutative); in the secondτστ−1 = σ−1 and we have the dihedral
group (2.10).

p-groups

THEOREM 4.15. A finitep-group 6= 1 has centre6= {1}.

PROOF. By assumption,(G : 1) is a power ofp, and it follows that(G : CG(y)) is power
of p (6= p0) for all y in the class equation (second form). Sincep divides every term in the
class equation except (perhaps)(Z(G) : 1), it must divide(Z(G) : 1) also.

COROLLARY 4.16. A group of orderpm has normal subgroups of orderpn for all n ≤ m.

PROOF. We use induction onm. The centre ofG contains an elementg of orderp, and so
N = 〈g〉 is a normal subgroup ofG of orderp. Now the induction hypothesis allows us
to assume the result forG/N, and the correspondence theorem (3.3) then gives it to us for
G.

PROPOSITION4.17. A group of orderp2 is commutative, and hence is isomorphic toCp ×
Cp or Cp2 .

PROOF. We know that the centreZ is nontrivial, and thatG/Z therefore has order1 or p.
In either case it is cyclic, and the next result implies thatG is commutative.

LEMMA 4.18. SupposeG contains a subgroupH in its centre (henceH is normal) such
thatG/H is cyclic. ThenG is commutative.

PROOF. Let a ∈ G be such thataH generatesG/H, so thatG/H = {(aH)i | i ∈ Z}.
Since(aH)i = aiH, we see that every element ofG can be writteng = aih with h ∈ H,
i ∈ Z. Now

aih · ai′h′ = aiai′hh′ becauseH ⊂ Z(G)
= ai′aih′h
= ai′h′ · aih.

REMARK 4.19. The above proof shows that ifH ⊂ Z(G) andG contains a set of repre-
sentatives forG/H whose elements commute, thenG is commutative.

It is now not difficult to show that any noncommutative group of orderp3 is isomorphic
to exactly one of the groups constructed in (3.16d,e) (Exercise 21). Thus, up to isomor-
phism, there are exactly two noncommutative groups of orderp3.
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Action on the left cosets

The action ofG on the set of left cosetsG/H of H in G is a very useful tool in the study
of groups. We illustrate this with some examples.

Let X = G/H. Recall that, for anyg ∈ G,

Stab(gH) = g Stab(H)g−1 = gHg−1

and the kernel of
G → Sym(X)

is the largest normal subgroup
⋂

g∈G gHg−1 of G contained inH.

REMARK 4.20. (a) LetH be a subgroup ofG not containing a normal subgroup ofG other
than1. ThenG → Sym(G/H) is injective, and we have realizedG as a subgroup of a
symmetric group of order much smaller than(G : 1)!. For example, ifG is simple, then
the Sylow theorems imply thatG has many proper subgroupsH 6= 1 (unlessG is cyclic),
but (by definition) it has no such normal subgroup.

(b) If (G : 1) does not divide(G : H)!, then

G → Sym(G/H)

can’t be injective (Lagrange’s theorem, 1.15), and we can conclude thatH contains a nor-
mal subgroup6= 1 of G. For example, ifG has order99, then it will have a subgroupN of
order11 (Cauchy’s theorem, 4.13), and the subgroup must be normal. In fact,G = N ×Q.

EXAMPLE 4.21. Corollary 4.14 shows that every groupG of order6 is either cyclic or
dihedral. Here we present a slightly different argument. According to Cauchy’s theorem
(4.13),G must contain an elementσ of order3 and an elementτ of order2. Moreover
N =df 〈σ〉 must be normal because6 doesn’t divide2! (or simply because it has index2).
Let H = 〈τ〉.

Either (a)H is normal inG, or (b)H is not normal inG. In the first case,στσ−1 = τ ,
i.e., στ = τσ, and so (4.18) shows thatG is commutative,G ≈ C2 × C3. In the second
case,G → Sym(G/H) is injective, hence surjective, and soG ≈ S3.

Permutation groups

ConsiderSym(X) whereX hasn elements. Since (up to isomorphism) a symmetry group
Sym(X) depends only on the number of elements inX, we may takeX = {1, 2, . . . , n},
and so work with13 Sn. Consider a permutation

α =

(
1 2 3 . . . n

α(1) α(2) α(3) . . . α(n)

)
.

Thenα is said to beevenor odd according as the number of pairs(i, j) with i < j and
α(i) > α(j) is even or odd. Thesignature, sign(α), of α is +1 or −1 according asα is
even or odd.

13We, of course, define multiplication inSn to be composition; other authors (see, for example, Artin
1991) write things backwards.
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ASIDE: To compute the signature ofα, connect (by a line) each elementi in the top row to
the elementi in the bottom row, and count the number of times the lines cross:α is even or
odd according as this number is even or odd. For example,(

1 2 3 4 5
3 5 1 4 2

)
is even (6 intersections).

For any polynomialF (X1, ..., Xn) and permutationα of {1, . . . , n}, define

(αF )(X1, ..., Xn) = F (Xα(1), ..., Xα(n)),

i.e.,αF is obtained fromF by replacing eachXi with Xα(i). Note that

(αβF )(X1, ..., Xn) = F (Xαβ(1), . . .) = F (Xα(β(1)), . . .) = (α(βF ))(X1, ..., Xn).

Let G(X1, ..., Xn) =
∏

i<j(Xj −Xi). Then

(αG)(X1, ..., Xn) =
∏
i<j

(Xα(j) −Xα(i)).

HenceαG = sign(α) ·G. Since this holds for allα, (αβ)G = sign(αβ)G, but

(αβ)G = α(βG) = α(sign(β)G) = sign β(αG) = sign(α) sign(β)G.

Hence
sign(αβ) = (sign α) (sign β) ,

and we have shown that “sign” is a homomorphismSn → {±1}. Whenn ≥ 2, it is
surjective, and so its kernel is a normal subgroup ofSn of order n!

2
, called thealternating

groupAn.
A cycleis a permutation of the following form

i1 7→ i2 7→ i3 7→ · · · 7→ ir 7→ i1, remainingi’s fixed.

The ij are required to be distinct. We denote this cycle by(i1i2...ir), and callr its length
— note thatr is also its order. A cycle of length2 is called atransposition. A cycle (i)
of length1 is the identity map. Thesupport of the cycle(i1 . . . ir) is the set{i1, . . . , ir},
and cycles are said to bedisjoint if their supports are disjoint. Note that disjoint cycles
commute. If

α = (i1...ir)(j1...js) · · · (l1...lu) (disjoint cycles),

then
αm = (i1...ir)

m(j1...js)
m · · · (l1...lu)m (disjoint cycles),

and it follows thatα has order lcm(r, s, ..., u).

PROPOSITION4.22.Every permutation can be written (in essentially one way) as a product
of disjoint cycles.
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PROOF. Let α ∈ Sn, and letO ⊂ {1, 2, . . . , n} be an orbit for〈α〉. If #O = r, then for
anyi ∈ O,

O = {i, α(i), . . . , αr−1(i)}.

Thereforeα and the cycle(i α(i) . . . αr−1(i)) have the same action on any element ofO.
Let

{1, 2, . . . , n} =
m⋃

j=1

Oj

be a the decomposition of{1, . . . , n} into a disjoint union of orbits for〈α〉, and letγj be
the cycle associated (as above) withOj. Then

α = γ1 · · · γm

is a decomposition ofα into a product of disjoint cycles. For the uniqueness, note that
a decompositionα = γ1 · · · γm into a product of disjoint cycles must correspond to a
decomposition of{1, ..., n} into orbits (ignoring cycles of length1 and orbits with only
one element). We can drop cycles of length one, change the order of the cycles, and change
how we write each cycle (by choosing different initial elements), but that’s all because the
orbits are intrinsically attached toα.

For example, (
1 2 3 4 5 6 7 8
5 7 4 2 1 3 6 8

)
= (15)(27634)(8).

It has order lcm(2, 5) = 10.

COROLLARY 4.23. Each permutationα can be written as a product of transpositions; the
number of transpositions in such a product is even or odd according asα is even or odd.

PROOF. The cycle
(i1i2...ir) = (i1i2) · · · (ir−2ir−1)(ir−1ir),

and so the first statement follows from the proposition. Becausesign is a homomorphism,
and the signature of a transposition is−1, sign(α) = (−1)#transpositions.

Note that the formula in the proof shows that the signature of a cycle of lengthr is
(−1)r−1, that is, anr-cycle is even or odd according asr is odd or even.

It is possible to define a permutation to be even or odd according as it is a product of an
even or odd number of transpositions, but then one has to go through an argument as above
to show that this is a well-defined notion.

The corollary says thatSn is generated by transpositions. ForAn there is the following
result.

COROLLARY 4.24. The alternating groupAn is generated by cycles of length three.
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PROOF. Any α ∈ An is the product of an even number of transpositions,α = t1t
′
1 · · · tmt′m,

but the product of two transpositions can always be written as a product of3-cycles:

(ij)(kl) =


(ij)(jl) = (ijl) casej = k,

(ij)(jk)(jk)(kl) = (ijk)(jkl) casei, j, k, l distinct,

1 case(ij) = (kl).

Recall that two elementsa andb of a groupG are said to be conjugatea ∼ b if there
exists an elementg ∈ G such thatb = gag−1, and that conjugacy is an equivalence relation.
For any groupG, it is useful to determine the conjugacy classes inG.

EXAMPLE 4.25. InSn, the conjugate of a cycle is given by:

g(i1 . . . ik)g
−1 = (g(i1) . . . g(ik)).

Henceg(i1 . . . ir)(j1 . . . js) . . . (l1 . . . lu)g
−1 = (g(i1) . . . g(ir))(g(j1) . . . g(js)) . . . (g(l1)...g(lu))

(even if the cycles are not disjoint). In other words, to obtaingαg−1, replace each element
in a cycle ofα be its image underg.

We shall now determine the conjugacy classes inSn. By a partition of n, we mean a
sequence of integersn1, . . . , nk such that1 ≤ ni ≤ ni+1 ≤ n (all i) and

n1 + n2 + · · ·+ nk = n.

Thus there are1, 2, 3, 5, 7, 11, . . . partitions of1, 2, 3, 4, 5, 6, . . . respectively (and
1, 121, 505 partitions of61). Note that a partition

{1, 2, ..., n} = O1 ∪ ... ∪Ok (disjoint union)

of {1, 2, . . . , n} determines a partition ofn,

n = n1 + n2 + ... + nk, ni = #Oi.

Since the orbits of an elementα of Sn form a partition of{1, . . . , n}, we can attach to each
suchα a partition ofn. For example, if

α = (i1 . . . in1) · · · (l1 . . . lnk
), (disjoint cycles) 1 < ni ≤ ni+1,

then the partition ofn attached toα is

1, 1, . . . , 1, n1, . . . , nk (n−
∑

ni ones).

PROPOSITION4.26. Two elementsα andβ of Sn are conjugate if and only if they define
the same partitions ofn.
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PROOF. =⇒ : We saw in (4.25) that conjugating an element preserves the type of its
disjoint cycle decomposition.

⇐= : Sinceα andβ define the same partitions ofn, their decompositions into products
of disjoint cycles have the same type:

α = (i1 . . . ir)(j1 . . . js) . . . (l1 . . . lu),

β = (i′1 . . . i′r)(j
′
1 . . . j′s) . . . (l′1 . . . l′u).

If we defineg to be(
i1 · · · ir j1 · · · js · · · l1 · · · lu
i′1 · · · i′r j′1 · · · j′s · · · l′1 · · · l′u

)
,

then
gαg−1 = β.

EXAMPLE 4.27. (ijk) = (1234...
ijk4... )(123)(1234...

ijk4... )
−1.

REMARK 4.28. For1 < k ≤ n, there aren(n−1)···(n−k+1)
k

distinctk-cycles inSn. The 1
k

is
needed so that we don’t count

(i1i2 . . . ik) = (iki1 . . . ik−1) = . . .

k times. Similarly, it is possible to compute the number of elements in any conjugacy
class inSn, but a little care is needed when the partition ofn has several terms equal. For
example, the number of permutations inS4 of type(ab)(cd) is

1

2

(
4× 3

2
× 2× 1

2

)
= 3.

The 1
2

is needed so that we don’t count(ab)(cd) = (cd)(ab) twice. ForS4 we have the
following table:

Partition Element No. in Conj. Class Parity
1 + 1 + 1 + 1 1 1 even

1 + 1 + 2 (ab) 6 odd
1 + 3 (abc) 8 even
2 + 2 (ab)(cd) 3 even

4 (abcd) 6 odd

Note thatA4 contains exactly3 elements of order2, namely those of type2 + 2, and that
together with1 they form a subgroupV . This group is a union of conjugacy classes, and is
therefore a normal subgroup ofS4.

THEOREM 4.29 (GALOIS). The groupAn is simple ifn ≥ 5

REMARK 4.30. Forn = 2, An is trivial, and forn = 3, An is cyclic of order3, and
hence simple; forn = 4 it is nonabelian and nonsimple (it contains the normal, even
characteristic, subgroupV — see above).
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LEMMA 4.31. LetN be a normal subgroup ofAn (n ≥ 5); if N contains a cycle of length
three, then it contains all cycles of length three, and so equalsAn (by 4.24).

PROOF. Let γ be the cycle of length three inN , and letα be a second cycle of length three
in An. We know from (4.26) thatα = gγg−1 for someg ∈ Sn. If g ∈ An, then this shows
thatα is also inN . If not, becausen ≥ 5, there exists a transpositiont ∈ Sn disjoint from
α. Thentg ∈ An and

α = tαt−1 = tgγg−1t−1,

and so againα ∈ N .

The next lemma completes the proof of the Theorem.

LEMMA 4.32. Every normal subgroupN of An, n ≥ 5, N 6= 1, contains a cycle of length
3.

PROOF. Let α ∈ N , α 6= 1. If α is not a3-cycle, we shall construct another element
α′ ∈ N , α′ 6= 1, which fixes more elements of{1, 2, . . . , n} than doesα. If α′ is not a
3-cycle, then we can apply the same construction. After a finite number of steps, we arrive
at a3-cycle.

Supposeα is not a3-cycle. When we express it as a product of disjoint cycles, either it
contains a cycle of length≥ 3 or else it is a product of transpositions, say

(i) α = (i1i2i3...) · · · or
(ii) α = (i1i2)(i3i4) · · · .

In the first case,α moves two numbers, sayi4, i5, other thani1, i2, i3, becauseα 6=
(i1i2i3), (i1 . . . i4). Let γ = (i3i4i5). Thenα1 =df γαγ−1 = (i1i2i4 . . .) · · · ∈ N , and
is distinct fromα (because it acts differently oni2). Thusα′ =df α1α

−1 6= 1, but α′ =
γαγ−1α−1 fixesi2 and all elements other thani1, ..., i5 fixed byα — it therefore fixes more
elements thanα.

In the second case, formγ, α1, α′ as in the first case withi4 as in (ii) andi5 any element
distinct from i1, i2, i3, i4. Thenα1 = (i1i2)(i4i5) · · · is distinct fromα because it acts
differently oni4. Thusα′ = α1α

−1 6= 1, butα′ fixesi1 andi2, and all elements6= i1, ..., i5
not fixed byα — it therefore fixes at least one more element thanα.

COROLLARY 4.33. For n ≥ 5, the only normal subgroups ofSn are1, An, andSn.

PROOF. If N is normal inSn, thenN ∩An is normal inAn. Therefore eitherN ∩An = An

or N ∩ An = {1}. In the first case,N ⊃ An, which has index2 in Sn, and soN = An or
Sn. In the second case, the mapx 7→ xAn : N → Sn/An is injective, and soN has order1
or 2, but it can’t have order2 because no conjugacy class inSn (other than{1}) consists of
a single element.

REMARK 4.34. A groupG is said to besolvableif there exist subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ · · · ⊃ Gr = {1}

such that eachGi is normal inGi−1 and each quotientGi−1/Gi is commutative. ThusAn

(alsoSn) is not solvable ifn ≥ 5.
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Let f(X) ∈ Q[X] be of degreen. In FT, §3, we attach tof a subgroup of the group of
permutations of the roots off , Gf ⊂ Sn, and we show that the roots off can be obtained
from the coefficients off by extracting radicals if and only ifGf is solvable (ibid. 5.23).
For everyn, there exist (lots of) polynomialsf of degreen with Gf = Sn.

The Todd-Coxeter algorithm.

Let G be a group described by a finite presentation, and letH be a subgroup described
by a generating set. Then the Todd-Coxeter algorithm14 is a strategy for writing down the
set of left cosets ofH in G together with the action ofG on the set. I illustrate it with an
example (from Artin 1991, 6.9, which provides more details, but note that he composes
permutations backwards).

LetG = 〈a, b, c|a3, b2, c2, cba〉 and letH be the subgroup generated byc (strictly speak-
ing, H is the subgroup generated by the element ofG represented by the reduced wordc).
The operation ofG on the set of cosets is described by the action of the generators, which
must satisfy the following rules:

(i) Each generator (a, b, c in our example) acts as a permutation.
(ii) The relations (a3, b2, c2, cba in our example) act trivially.

(iii) The generators ofH (c in our example) fix the coset1H.
(iv) The operation on the cosets is transitive.

The strategy is to introduce cosets, denoted1, 2, . . . with 1 = 1H, as necessary.
Rule (iii) tells us simply thatc1 = c. We now apply the first two rules. Since we

don’t know whata1 is, let’s denote it2: a1 = 2. Similarly, leta2 = 3. Now a3 = a31,
which according to (ii) must be 1. Thus, we have introduced three (potential) cosets1, 2,
3, permuted bya as follows:

1
a7→ 2

a7→ 3
a7→ 1.

What isb1? We don’t know, and so it is prudent to introduce another coset4 = b1. Now
b4 = 1, and so we have

1
b7→ 4

b7→ 1.

We still have the relationcba. We knowa1 = 2, but we don’t know whatb2 is, and so set
b2 = 5. By (iii) c1 = 1, and by (ii) applied tocba we havec5 = 1. Therefore, according to
(i) we must have5 = 1; we drop5, and so nowb2 = 1. Sinceb4 = 1 we must have4 = 2,
and so we can drop4 also. What we know can be summarized by the table:

a a a b b c c a b c
1 2 3 1 2 1 1 1 2 1 1
2 3 1 2 1 2 2 3 2
3 1 2 3 3 3 1 2 3

14To solve a problem, an algorithm must always terminate in a finite time with the correct answer to the
problem. The Todd-Coxeter algorithm does not solve the problem of determining whether a finite presentation
defines a finite group (in fact, there is no such algorithm). It does, however, solve the problem of determining
the order of a finite group from a finite presentation of the group (use the algorithm withH the trivial subgroup
1.)
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The bottom right corner, which is forced by (ii), tells us thatc2 = 3. Hence alsoc3 = 2,
and this then determines the rest of the table:

a a a b b c c a b c
1 2 3 1 2 1 1 1 2 1 1
2 3 1 2 1 2 3 2 3 3 2
3 1 2 3 3 3 2 3 1 2 3

We find that we have three cosets on whicha, b, c act as

a = (123) b = (12) c = (23).

More precisely, we have written down a mapG → S3 that is consistent with the above
rules. A theorem (Artin 1991, 9.10) now says that this does in fact describe the action of
G onG/H. Since the three elements(123), (12), and(23) generateS3, this shows that the
action ofG on G/H induces an isomorphismG → S3, and thatH is a subgroup of order
2.

In (Artin 1991, 6.9) it is explained how to make this procedure into an algorithm which,
when it succeeds in producing a consistent table, will in fact produce the correct table.

This algorithm is implemented in Maple, except that it computes the action theright
cosets. Here is a transcript:

>with(group); [loads the group theory package.]
>G:=grelgroup( {a,b,c }, {[a,a,a],[b,b],[c,c],[a,b,c] }); [defines

G to have generators a,b,c and relations aaa, bb, cc, abc]
>H:=subgrel( {x=[c] },G); [defines H to be the subgroup generated

by c]
>permrep(H);
permgroup(3, a=[[1,2,3],b=[1,2],c=[2,3]])
[computes the action of G on the set of right cosets of H in

G] .

Primitive actions.

Let G be a group acting on a setX, and letπ be a partition ofX. We say thatπ is stabilized
by G if

A ∈ π ⇒ gA ∈ π.

EXAMPLE 4.35. (a) The subgroupG = 〈(1234)〉 of S4 stabilizes the partition{{1, 3}, {2, 4}}
of {1, 2, 3, 4}.

(b) Identify X = {1, 2, 3, 4} with the set of vertices of the square on whichD4 acts
in the usual way, namely, withσ = (1234), τ = (2, 4). ThenD4 stabilizes the partition
{{1, 3}, {2, 4}}.

(c) Let X be the set of partitions of{1, 2, 3, 4} into two sets, each with two elements.
ThenS4 acts onX, andKer(S4 → Sym(X)) is the subgroupV defined in (4.28).

The groupG always stabilizes the trivial partitions ofX, namely, the set of all one-
element subsets ofX, and{X}. When it stabilizes only those partitions, we say that the
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action isprimitive; otherwise it isimprimitive. A subgroup ofSym(X) (e.g., ofSn) is said
to beprimitive if it acts primitively onX. Obviously,Sn itself is primitive, but Example
4.35b shows thatD4, regarded as a subgroup ofS4 in the obvious way, is not primitive.

EXAMPLE 4.36. A doubly transitive action is primitive: if it stabilized

{{x, x′, ...}, {y, ...}...},

then there would be no element sending(x, x′) to (x, y).

REMARK 4.37. TheG-orbits form a partition ofX that is stabilized byG. If the action is
primitive, then the partition into orbits must be one of the trivial ones. Hence

action primitive ⇒ action transitive or trivial(gx = x all g, x).

For the remainder of this section,G is a finite group acting transitively on a setX
with at least two elements.

PROPOSITION4.38. The groupG acts imprimitively if and only if there is an

A ⊂ X, A 6= X, #A ≥ 2,

such that, for eachg ∈ G, eithergA = A or gA ∩ A = ∅.

PROOF. =⇒: The partitionπ stabilized byG contains such anA.
⇐=: From such anA, we can form a partition{A, g1A, g2A, ...} of X, which is stabi-

lized byG.

A subsetA of X such that, for eachg ∈ G, gA = A or gA ∩ A = ∅ is calledblock.

PROPOSITION4.39. LetA be a block inX with #A ≥ 2, A 6= X. For anyx ∈ A,

Stab(x) $ Stab(A) $ G.

PROOF. We haveStab(A) ⊃ Stab(x) because

gx = x ⇒ gA ∩ A 6= ∅ ⇒ gA = A.

Let y ∈ A, y 6= x. BecauseG acts transitively onX, there is ag ∈ G such thatgx = y.
Theng ∈ Stab(A), butg /∈ Stab(x).

Let y /∈ A. There is ag ∈ G such thatgx = y, and theng /∈ Stab(A).

THEOREM 4.40. The groupG acts primitively onX if and only if, for one (hence all)x in
X, Stab(x) is a maximal subgroup ofG.

PROOF. If G does not act primitively onX, then (see 4.38) there is a blockA $ X with at
least two elements, and so (4.39) shows thatStab(x) will not be maximal for anyx ∈ A.

Conversely, suppose that there exists anx in X and a subgroupH such that

Stab(x) $ H $ G.

Then I claim thatA = Hx is a block6= X with at least two elements.
BecauseH 6= Stab(x), Hx 6= {x}, and so{x} $ A $ X.
If g ∈ H, thengA = A. If g /∈ H, thengA is disjoint fromA: for supposeghx = h′x

someh′ ∈ H; thenh′−1gh ∈ Stab(x) ⊂ H, sayh′−1gh = h′′, andg = h′h′′h−1 ∈ H.
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Exercises 20–33

20*. (a) Show that a finite group can’t be equal to the union of the conjugates of a proper
subgroup.
(b) Give an example of a proper subsetS of a finite groupG such thatG =

⋃
g∈G gSg−1.

21*. Prove that any noncommutative group of orderp3, p an odd prime, is isomorphic to
one of the two groups constructed in (3.16d).

22*. Let p be the smallest prime dividing(G : 1) (assumed finite). Show that any subgroup
of G of indexp is normal.

23*. Show that a group of order2m, m odd, contains a subgroup of index2. (Hint: Use
Cayley’s theorem 1.11)

24. Let G = GL3(F2).
(a) Show that(G : 1) = 168.
(b) Let X be the set of lines through the origin inF3

2; show thatX has7 elements, and
that there is a natural injective homomorphismG ↪→ Sym(X) = S7.

(c) Use Jordan canonical forms to show thatG has six conjugacy classes, with1, 21, 42,
56, 24, and24 elements respectively. [Note that ifM is a freeF2[α]-module of rank
one, thenEndF2[α](M) = F2[α].]

(d) Deduce thatG is simple.

25. Let G be a group. IfAut(G) is cyclic, prove thatG is commutative; if further,G is
finite, prove thatG is cyclic.

26. Show thatSn is generated by(1 2), (1 3), . . . , (1 n); also by(1 2), (2 3), . . . , (n− 1 n).

27*. Let K be a conjugacy class of a finite groupG contained in a normal subgroupH
of G. Prove thatK is a union ofk conjugacy classes of equal size inH, wherek = (G :
H · CG(x)) for anyx ∈ K.

28*. (a) Let σ ∈ An. From Ex. 27 we know that the conjugacy class ofσ in Sn either
remains a single conjugacy class inAn or breaks up as a union of two classes of equal size.
Show that the second case occurs⇐⇒ σ does not commute with an odd permutation
⇐⇒ the partition ofn defined byσ consists of distinct odd integers.
(b) For each conjugacy classK in A7, give a member ofK, and determine#K.

29*. Let G be the group with generatorsa, b and relationsa4 = 1 = b2, aba = bab.
(a) (4 pts) Use the Todd-Coxeter algorithm (withH = 1) to find the image ofG under

the homomorphismG → Sn, n = (G : 1), given by Cayley’s Theorem 1.11. [No
need to include every step; just an outline will do.]

(b) (1 pt) Use Maple to check your answer.

30*. Show that if the action ofG on X is primitive and effective, then the action of any
normal subgroupH 6= 1 of G is transitive.

31. (a) Check thatA4 has8 elements of order3, and3 elements of order2. Hence it has no
element of order6.
(b) Prove thatA4 has no subgroup of order6 (cf. 1.18b). (Use 4.21.)
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(c) Prove thatA4 is the only subgroup ofS4 of order12.

32. Let G be a group with a subgroup of indexr. Prove:
(a) If G is simple, then(G : 1) dividesr!.
(b) If r = 2, 3, or 4, thenG can’t be simple.
(c) There exists a nonabelian simple group with a subgroup of index5.

33. Prove thatSn is isomorphic to a subgroup ofAn+2.
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5 The Sylow Theorems; Applications

In this section, all groups are finite.
Let G be a group and letp be a prime dividing(G : 1). A subgroup ofG is called

a Sylow p-subgroup ofG if its order is the highest power ofp dividing (G : 1). The
Sylow theorems state that there exist Sylowp-subgroups for all primesp dividing (G : 1),
that the Sylowp-subgroups for a fixedp are conjugate, and that everyp-subgroup ofG
is contained in such a subgroup; moreover, the theorems restrict the possible number of
Sylowp-subgroups inG.

The Sylow theorems

In the proofs, we frequently use that ifO is an orbit for a groupH acting on a setX, and
x0 ∈ O, then the mapH → X, g 7→ hx0 induces a bijection

H/ Stab(x0) → O;

see (4.7). Therefore
(H : Stab(x0)) = #O.

In particular, whenH is a p-group, #O is a power ofp: eitherO consists of a single
element, or#O is divisible byp. SinceX is a disjoint union of the orbits, we can conclude:

LEMMA 5.1. Let H be ap-group acting on a finite setX, and letXH be the set of points
fixed byH; then

#X ≡ #XH (modp).

When the lemma is applied to ap-groupH acting on itself by conjugation, we find that

(Z(H) : 1) ≡ (H : 1) mod p

and sop|(Z(H) : 1) (cf. the proof of 4.15).

THEOREM 5.2 (SYLOW I). LetG be a finite group, and letp be prime. Ifpr|(G : 1), then
G has a subgroup of orderpr.

PROOF. According to (4.16), it suffices to prove this withpr the highest power ofp dividing
(G : 1), and so from now on we assume that(G : 1) = prm with m not divisible byp. Let

X = {subsetsof G with pr elements},

with the action ofG defined by

G×X → X, (g, A) 7→ gA
df
= {ga | a ∈ A}.

Let A ∈ X, and let
H = Stab(A)

df
= {g ∈ G | gA = A}.
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For anya0 ∈ A, h 7→ ha0 : H → A is injective (cancellation law), and so(H : 1) ≤ #A =
pr. In the equation

(G : 1) = (G : H)(H : 1)

we know that(G : 1) = prm, (H : 1) ≤ pr, and that(G : H) is the number of elements in
the orbit ofA. If we can find anA such thatp doesn’t divide the number of elements in its
orbit, then we can conclude that (for such anA), H = Stab A has orderpr.

The number of elements inX is

#X =

(
prm
pr

)
=

(prm)(prm− 1) · · · (prm− i) · · · (prm− pr + 1)

pr(pr − 1) · · · (pr − i) · · · (pr − pr + 1)
.

Note that, becausei < pr, the power ofp dividing prm− i is the power ofp dividing i. The
same is true forpr − i. Therefore the corresponding terms on top and bottom are divisible
by the same powers ofp, and sop does not divide#X. Because the orbits form a partition
of X,

#X =
∑

#Oi, Oi the distinct orbits,

and so at least one of the#Oi is not divisible byp.

EXAMPLE 5.3. LetFp = Z/pZ, the field withp elements, and letG = GLn(Fp). The
n× n matrices inG are precisely those whose columns form a basis forFn

p . Thus, the first
column can be any nonzero vector inFn

p , of which there arepn − 1; the second column
can be any vector not in the span of the first vector, of which there arepn − p; and so on.
Therefore, the order ofG is

(pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1),

and so the power ofp dividing (G : 1) is p1+2+···+(n−1). Consider the matrices of the form
1 ∗ · · · ∗
0 1 · · · ∗
0 0 · · · ∗
...

... · · · ...
0 0 · · · 1

 .

They form a subgroupU of orderpn−1pn−2 · · · p, which is therefore a Sylowp-subgroup
G.

REMARK 5.4. The theorem gives another proof of Cauchy’s theorem (4.13). If a primep
divides(G : 1), thenH will have a subgroupH of orderp, and anyg ∈ H, g 6= 1, is an
element ofG of orderp.

REMARK 5.5. The proof of Theorem 5.2 can be modified to show directly that for each
powerpr of p dividing (G : 1) there is a subgroupH of G of orderpr. One again writes
(G : 1) = prm and considers the setX of all subsets of orderpr. In this case, the highest
powerpr0 of p dividing #X is the highest power ofp dividing m, and it follows that there
is an orbit inX whose order is not divisible bypr0+1. For anA in such an orbit, the same
counting argument shows thatStab(A) haspr elements. We recommend that the reader
write out the details.
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THEOREM 5.6 (SYLOW II). Let G be a finite group, and let(G : 1) = prm with m not
divisible byp.

(a) Any two Sylowp-subgroups are conjugate.
(b) Letsp be the number of Sylowp-subgroups inG; thensp ≡ 1 modp andsp|m.
(c) Anyp-subgroup ofG is contained in a Sylowp-subgroup.

Let H be a subgroup ofG. Recall (4.6, 4.8) that the normalizer ofH in G is

NG(H) = {g ∈ G | gHg−1 = H},

and that the number of conjugates ofH in G is (G : NG(H)).

LEMMA 5.7. LetP be a Sylowp-subgroup ofG, and letH be ap-subgroup. IfH normal-
izesP , i.e., if H ⊂ NG(P ), thenH ⊂ P . In particular, no Sylowp-subgroup ofG other
thanP normalizesP .

PROOF. BecauseH andP are subgroups ofNG(P ) with P normal inNG(P ), HP is a
subgroup, andH/H ∩ P ∼= HP/P (apply 3.2). Therefore(HP : P ) is a power ofp (here
is where we use thatH is ap-group), but

(HP : 1) = (HP : P )(P : 1),

and(P : 1) is the largest power ofp dividing (G : 1), hence also the largest power ofp
dividing (HP : 1). Thus(HP : P ) = p0 = 1, andH ⊂ P .

PROOF OFSYLOW II . (a) LetX be the set of Sylowp-subgroups inG, and letG act onX
by conjugation:

(g, P ) 7→ gPg−1 : G×X → X.

Let O be one of theG-orbits: we have to showO is all of X.
Let P ∈ O, and consider the action by conjugation ofP onO. This singleG-orbit may

break up into severalP -orbits, one of which will be{P}. In fact this is the only one-point
orbit because

{Q} is aP -orbit⇐⇒ P normalizesQ,

which we know (5.7) happens only forQ = P . Hence the number of elements in every
P -orbit other than{P} is divisible byp, and we have that#O ≡ 1 modp.

Suppose there exists aP /∈ O. We again letP act onO, but this time the argument
shows that there are no one-point orbits, and so the number of elements in everyP -orbit is
divisible byp. This implies that#O is divisible byp, which contradicts what we proved in
the last paragraph. There can be no suchP , and soO is all of X.

(b) Sincesp is now the number of elements inO, we have also shown thatsp ≡ 1 (mod
p).

Let P be a Sylowp-subgroup ofG. According to (a),sp is the number of conjugates of
P , which equals

(G : NG(P )) =
(G : 1)

(NG(P ) : 1)
=

(G : 1)

(NG(P ) : P ) · (P : 1)
=

m

(NG(P ) : P )
.

This is a factor ofm.
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(c) Let H be ap-subgroup ofG, and letH act on the setX of Sylow p-subgroups by
conjugation. Because#X = sp is not divisible byp, XH must be nonempty (Lemma 5.1),
i.e., at least oneH-orbit consists of a single Sylowp-subgroup. But thenH normalizesP
and Lemma 5.7 implies thatH ⊂ P .

COROLLARY 5.8. A Sylowp-subgroup is normal if and only if it is the only Sylowp-
subgroup.

PROOF. Let P be a Sylowp-subgroup ofG. If P is normal, then (a) of Sylow II implies
that it is the only Sylowp-subgroup. The converse statement follows from (3.12c) (which
shows, in fact, thatP is even characteristic).

COROLLARY 5.9. Suppose that a groupG has only one Sylowp-subgroup for eachp|(G :
1). ThenG is a direct product of its Sylowp-subgroups.

PROOF. Let P1, . . . , Pr be the Sylow subgroups ofG, and let(Pi : 1) = pri
i . The pi

are distinct primes. BecauseP1 andP2 are normal,P1P2 is a normal subgroup ofG. As
P1 ∩ P2 = 1, (3.6) implies that

(a, b) 7→ ab : P1 × P2 → P1P2

is an isomorphism. In particular,P1P2 has orderpr1
1 pr2

2 . Now P1P2 ∩ P3 = 1, and so

P1 × P2 × P3
∼= P1P2P3,

which has orderpr1
1 pr2

2 pr3
3 . Continue in this manner. (Alternatively, apply Exercise 15.)

EXAMPLE 5.10. There is a geometric description of the Sylow subgroups ofG = GLn(Fp).
Let V = Fn

p , regarded as a vector space of dimensionn overFp. A full flag F in V is a
sequence of subspaces

V = Vn ⊃ Vn−1 ⊃ · · · ⊃ Vi ⊃ · · · ⊃ V1 ⊃ {0}

with dim Vi = i. Given such a flagF , let U(F ) be the set of linear mapsα : V → V such
that

(a) α(Vi) ⊂ Vi for all i, and
(b) the endomorphism ofVi/Vi−1 induced byα is the identity map.

I claim that U(F ) is a Sylowp-subgroup ofG. Indeed, we can construct a basis
{e1, . . . , en} for V such{e1} is basis forV1, {e1, e2} is a basis forV2, and so on. Rel-
ative to this basis, the matrices of the elements ofU(F ) are exactly the elements of the
groupU of (5.3).

Let α ∈ GLn(F). ThenαF =df {αVn, αVn−1, . . .} is again a full flag, andU(αF ) =
α ·U(F ) ·α−1. From (a) of Sylow II, we see that the Sylowp-subgroups ofG are precisely
the groups of the formU(F ) for some full flagF . (In fact, conversely, these ideas can be
used to prove the Sylow theorems — see Exercise 70 for Sylow I.)
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Applications

We apply what we have learnt to obtain information about groups of various orders.

EXAMPLE 5.11 (GROUPS OF ORDER99). Let G have order 99. The Sylow theorems
imply thatG has at least one subgroupH of order11, and in facts11

∣∣99
11

ands11 ≡ 1 mod
11. It follows thats11 = 1, andH is normal. Similarly,s9|11 ands9 ≡ 1 mod 3, and so
the Sylow3-subgroup is also normal. HenceG is isomorphic to the direct product of its
Sylow subgroups (5.9), which are both commutative (4.17), and soG commutative.

Here is an alternative proof. Verify as before that the Sylow11-subgroupN of G
is normal. The Sylow3-subgroupQ maps bijectively ontoG/N , and soG = N o Q.
It remains to determine the action by conjugation ofQ on N . But Aut(N) is cyclic of
order10 (see 3.10), and so the only homomorphismQ → Aut(N) is the trivial one (the
homomorphism that maps everything to1). It follows thatG is the direct product ofN and
Q.

EXAMPLE 5.12 (GROUPS OF ORDERpq, p, q PRIMES, p < q). LetG be such a group, and
let P andQ be Sylowp andq subgroups. Then(G : Q) = p, which is the smallest prime
dividing (G : 1), and so (see Exercise 22)Q is normal. BecauseP maps bijectively onto
G/Q, we have that

G = Q o P,

and it remains to determine the action ofP onQ by conjugation.
The groupAut(Q) is cyclic of orderq−1 (see 3.10), and so, unlessp|q−1, G = Q×P .
If p|q − 1, thenAut(Q) (being cyclic) has a unique subgroupP ′ of orderp. In factP ′

consists of the maps
x 7→ xi, {i ∈ Z/qZ | ip = 1}.

Let a andb be generators forP andQ respectively, and suppose that the action ofa on Q
by conjugation isx 7→ xi0 , i0 6= 1 (in Z/qZ). ThenG has generatorsa, b and relationsap,
bq, aba−1 = bi0. Choosing a differenti0 amounts to choosing a different generatora for P ,
and so gives an isomorphic groupG.

In summary: ifp - q − 1, then the only group of orderpq is the cyclic groupCpq; if
p|q − 1, then there is also a nonabelian group given by the above generators and relations.

EXAMPLE 5.13 (GROUPS OF ORDER30). LetG be a group of order30. Then

s3 = 1, 4, 7, 10, . . . and divides10;

s5 = 1, 6, 11, . . . and divides6.

Hences3 = 1 or 10, ands5 = 1 or 6. In fact, at least one is1, for otherwise there would be
20 elements of order3 and24 elements of order5, which is impossible. Therefore, a Sylow
3-subgroupP or a Sylow5-subgroupQ is normal, and soH = PQ is a subgroup ofG.
Because3 doesn’t divide5 − 1 = 4, (5.12) shows thatH is commutative,H ≈ C3 × C5.
Hence

G = (C3 × C5) oθ C2,
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and it remains to determine the possible homomorphismsθ : C2 → Aut(C3 × C5). But
such a homomorphismθ is determined by the image of the nonidentity element ofC2,
which must be an element of order2. Let a, b, c generateC3, C5, C2. Then

Aut(C3 × C5) = Aut(C3)× Aut(C5),

and the only elements ofAut C3 andAut C5 of order2 area 7→ a−1 andb 7→ b−1. Thus
there are exactly4 homomorphismsθ, andθ(c) is one of the following elements:{

a 7→ a
b 7→ b

{
a 7→ a

b 7→ b−1

{
a 7→ a−1

b 7→ b

{
a 7→ a−1

b 7→ b−1 .

The groups corresponding to these homomorphisms have centres of order30, 3 (generated
by a), 5 (generated byb), and1 respectively, and hence are nonisomorphic. We have shown
that (up to isomorphism) there are exactly4 groups of order30. For example, the third on
our list has generatorsa, b, c and relations

a3, b5, c2, ab = ba, cac−1 = a−1, cbc−1 = b.

EXAMPLE 5.14 (GROUPS OF ORDER12). Let G be a group of order12, and letP be its
Sylow3-subgroup. IfP is not normal, thenP doesn’t contain a nontrivial normal subgroup
of G, and so the map (4.2, action on the left cosets)

ϕ : G → Sym(G/P ) ≈ S4

is injective, and its image is a subgroup ofS4 of order12. From Sylow II we see thatG
has exactly4 Sylow 3-subgroups, and hence it has exactly8 elements of order3. But all
elements ofS4 of order3 are inA4 (see the table in 4.28), and soϕ(G) intersectsA4 in a
subgroup with at least8 elements. By Lagrange’s theoremϕ(G) = A4, and soG ≈ A4.

Now assume thatP is normal. ThenG = P o Q whereQ is the Sylow4-subgroup. If
Q is cyclic of order4, then there is a unique nontrivial mapQ(= C4) → Aut(P )(= C2),
and hence we obtain a single noncommutative groupC3 o C4. If Q = C2 × C2, there are
exactly3 nontrivial homomorphismθ : Q → Aut(P ), but the three groups resulting are all
isomorphic toS3×C2 with C2 = Ker θ. (The homomorphisms differ by an automorphism
of Q, and so we can also apply Lemma 3.18.)

In total, there are3 noncommutative groups of order12 and2 commutative groups.

EXAMPLE 5.15 (GROUPS OF ORDERp3). Let G be a group of orderp3, with p an odd
prime, and assumeG is not commutative. We know from (4.16) thatG has a normal
subgroupN of orderp2.

If every element ofG has orderp (except1), thenN ≈ Cp×Cp and there is a subgroup
Q of G of orderp such thatQ ∩N = {1}. Hence

G = N oθ Q

for some homomorphismθ : Q → N . The order ofAut(N) ≈ GL2(Fp) is (p2−1)(p2−p)
(see 5.3), and so its Sylowp-subgroups have orderp. By the Sylow theorems, they are
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conjugate, and so Lemma 3.19 shows that there is exactly one nonabelian group in this
case.

SupposeG has elements of orderp2, and letN be the subgroup generated by such an
elementa. Because(G : N) = p is the smallest (in fact only) prime dividing(G : 1), N is
normal inG (Exercise 22). We next show thatG contains an element of orderp not inN .

We knowZ(G) 6= 1, and, becauseG isn’t commutative, thatG/Z(G) is not cyclic
(4.18). Therefore(Z(G) : 1) = p andG/Z(G) ≈ Cp × Cp. In particular, we see that for
all x ∈ G, xp ∈ Z(G). BecauseG/Z(G) is commutative, the commutator of any pair of
elements ofG lies inZ(G), and an easy induction argument shows that

(xy)n = xnyn[y, x]
n(n−1)

2 , n ≥ 1.

Therefore(xy)p = xpyp, and sox 7→ xp : G → G is a homomorphism. Its image is
contained inZ(G), and so its kernel has order at leastp2. SinceN contains onlyp − 1
elements of orderp, we see that there exists an elementb of orderp outsideN . HenceG =
〈a〉o 〈b〉 ≈ Cp2 o Cp, and it remains to observe (3.19) that the nontrivial homomorphisms
Cp → Aut(Cp2) ≈ Cp × Cp−1 give isomorphic groups.

Thus, up to isomorphism, the only noncommutative groups of orderp3 are those con-
structed in (3.16e).

EXAMPLE 5.16 (GROUPS OF ORDER2pn, 4pn, AND 8pn, p ODD). Let G be a group of
order2mpn, 1 ≤ m ≤ 3, p an odd prime,1 ≤ n. We shall show thatG is not simple. LetP
be a Sylowp-subgroup and letN = NG(P ), so thatsp = (G : N).

From Sylow II, we know thatsp|2m, sp = 1, p + 1, 2p + 1, . . .. If sp = 1, P is normal.
If not, there are two cases to consider:

(i) sp = 4 andp = 3, or
(ii) sp = 8 andp = 7.

In the first case, the action by conjugation ofG on the set of Sylow3-subgroups15

defines a homomorphismG → S4, which, if G is simple, must be injective. Therefore
(G : 1)|4!, and son = 1; we have(G : 1) = 2m3. Now the Sylow2-subgroup has index3,
and so we have a homomorphismG → S3. Its kernel is a nontrivial normal subgroup ofG.

In the second case, the same argument shows that(G : 1)|8!, and son = 1 again. Thus
(G : 1) = 56 ands7 = 8. ThereforeG has48 elements of order7, and so there can be only
one Sylow2-subgroup, which must therefore be normal.

Note that groups of orderpqr, p, q primes,p < q are not simple, because Exercise 22
shows that the Sylowq-subgroup is normal. An examination of cases now reveals thatA5

is the smallest noncyclic simple group.

EXAMPLE 5.17. LetG be a simple group of order60. We shall show thatG is isomorphic
to A5.

Note that, becauseG is simple,s2 = 3, 5, or 15. If P is a Sylow2-subgroup and
N = NG(P ), thens2 = (G : N).

The cases2 = 3 is impossible, because the kernel ofG → Sym(G/N) would be a
nontrivial subgroup ofG.

15Equivalently, the usual mapG → Sym(G/N).
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In the cases2 = 5, we get an inclusionG ↪→ Sym(G/N) = S5, which realizesG as a
subgroup of index2 in S5, but we saw in (4.33) that, forn ≥ 5, An is the only subgroup of
index2 in Sn.

In the cases2 = 15, a counting argument (using thats5 = 6) shows that there exist two
Sylow2-subgroupsP andQ intersecting in a group of order2. The normalizerN of P ∩Q
containsP andQ, and so has order12, 20, or60. In the first case, the above argument show
thatG ≈ A5, and the remaining cases contradict the simplicity ofG.
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6 Normal Series; Solvable and Nilpotent Groups

Normal Series.

Let G be a group. Anormal series(bettersubnormal series) in G is a finite chain of
subgroups

G = G0 B G1 B · · · B Gi B Gi+1 B · · · B Gn = {1}.

Thus Gi+1 is normal inGi, but not necessarily inG. The series is said to be without
repetitions ifGi 6= Gi+1. Thenn is called thelength of the series. The quotient groups
Gi/Gi+1 are called thequotient(or factor) groupsof the series.

A normal series is said to be acomposition seriesif it has no repetitions and can’t
be refined, i.e., ifGi+1 is a maximal proper normal subgroup inGi for eachi. Thus a
normal series is a composition series if and only if each quotient group is simple and6= 1.
Obviously, every finite group has a composition series (usually many): chooseG1 to be
a maximal proper normal subgroup ofG; then chooseG2 to be a maximal proper normal
subgroup ofG1, etc.. An infinite group may or may not have a finite composition series.

Note that from a normal series

G = G0 B G1 B · · · B Gi B Gi+1 B · · · B Gn ⊃ {1}

we obtain a sequence of exact sequences

1 → Gn → Gn−1 → Gn/Gn−1 → 1

1 → Gn−1 → Gn−2 → Gn−2/Gn−1 → 1

· · ·

1 → G1 → G0 → G0/G1 → 1.

ThusG is built up out of the quotientsG0/G1, G1/G2, . . . , Gn by forming successive ex-
tensions. In particular, since every finite group has a composition series, it can be regarded
as being built up out of simple groups. The Jordan-Hölder theorem, which is the main topic
of this subsection, says that these simple groups are independent of the composition series
(up to order and isomorphism).

Note that ifG has a normal seriesG = G0 B G1 B · · · B Gn ⊃ {1}, then

(G : 1) =
∏

(Gi−1 : Gi) =
∏

(Gi−1/Gi : 1).

EXAMPLE 6.1. (a) The symmetric groupS3 has a composition series

S3 B A3 B 1

with quotientsC2, C3.
(b) The symmetric groupS4 has a composition series

S4 B A4 B V B 〈(13)(24)〉 B 1,
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whereV ≈ C2 × C2 consists of all elements of order2 in A4 (see 4.28). The quotients are
C2, C3, C2, C2.

(c) Any full flag in Fn
p , p a prime, is a composition series. Its length isn, and its

quotients areCp, Cp, . . . , Cp.
(d) Consider the cyclic groupCm. For any factorizationm = p1 · · · pr of m into a

product of primes (not necessarily distinct), there is a composition series

Cm B C m
p1

B C m
p1p2

B · · ·
‖ ‖ ‖
〈σ〉 〈σp1〉 〈σp1p2〉

The length isr, and the quotients areCp1 , Cp2 , . . . , Cpr .
(e) SupposeG is a direct product of simple groups,G = H1 × · · · ×Hr. ThenG has a

composition series

G B H2 × · · · ×Hr B H3 × · · · ×Hr B · · ·

of lengthr and with quotientsH1, H2, . . . , Hr. Note that for any permutationπ of {1, 2, . . . r},
there is another composition series with quotientsHπ(1), Hπ(2), . . . , Hπ(r).

(f) We saw in (4.33) that forn ≥ 5, the only normal subgroups ofSn areSn, An, {1},
and in (4.29) thatAn is simple. HenceSn B An B {1} is theonly composition series for
Sn.

As we have seen, a finite group may have many composition series. The Jordan-Hölder
theorem says that they all have the same length, and the same quotients (up to order and
isomorphism). More precisely:

THEOREM 6.2 (JORDAN-HÖLDER). If

G = G0 B G1 B · · · B Gs = {1}

G = H0 B H1 B · · · B Ht = {1}
are two composition series forG, thens = t and there is a permutationπ of {1, 2, . . . , s}
such thatGi/Gi+1 ≈ Hπ(i)/Hπ(i+1). 16

PROOF. We use induction on the order ofG.
Case I:H1 = G1. In this case, we have two composition series forG1, to which we can

apply the induction hypothesis.
Case II:H1 6= G1. Because each ofG1 andH1 is normal inG, G1H1 is a normal

subgroup ofG, and it properly contains bothG1 andH1. But they are maximal normal
subgroups ofG, and soG1H1 = G. Therefore

G/G1 = G1H1/G1
∼= H1/G1 ∩H1 (see 3.2).

Similarly G/H1
∼= G1/G1 ∩H1. HenceK2 =df G1 ∩H1 is a maximal normal subgroup in

bothG1 andH1, and
G/G1 ≈ H1/K2, G/H1 ≈ G1/K2.

16Jordan showed that corresponding quotients had the same order, and Hölder that they were isomorphic.
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Choose a composition series
K2 B K3 B · · · B Ku.

We have the picture:

G1 B G2 B · · · B Gs

� �
G K2 B · · · B Ku

� �
H1 B H2 B · · · B Ht

.

On applying the induction hypothesis toG1 andH1 and their composition series in the
diagram, we find that

Quotients(G B G1 B G2 B · · · ) = {G/G1, G1/G2, G2/G3, . . .}
∼ {G/G1, G1/K2, K2/K3, . . .}
∼ {H1/K2, G/H1, K2/K3, . . .}
∼ {G/H1, H1/K2, K2/K3, . . .}
∼ {G/H1, H1/H2, H2/H3, . . .}
= Quotients(G B H1 B H2 B · · · ).

In passing from the second to the third line, we used the isomorphismsG/G1 ≈ H1/K2

andG/H1 ≈ G1/K2.

Note that the theorem applied to a cyclic groupCm implies that the factorization of an
integer into a product of primes is unique.

REMARK 6.3. There are infinite groups having finite composition series (there are even
infinite simple groups). For such a group, letd(G) be the minimum length of a composition
series. Then the Jordan-Hölder theorem extends to show that all composition series have
lengthd(G) and have isomorphic quotient groups. The same proof works except that you
have to use induction ond(G) instead of(G : 1) and verify thatK2 has a finite composition
series.

The quotients of a composition series are also calledcomposition factors.

Solvable groups

A normal series whose quotient groups are all commutative is called asolvable series.
A group is solvable if it has a solvable series. Alternatively, we can say that a group is
solvable if it can be obtained by forming successive extensions of abelian groups. Since
a commutative group is simple if and only if it is cyclic of prime order, we see thatG is
solvable if and only if for one (hence every) composition series the quotients are all cyclic
groups of prime order.

Every commutative group is solvable, as is every dihedral group. The results in Section
5 show that every group of order< 60 is solvable. By contrast, a noncommutative simple
group, e.g.,An for n ≥ 5, will not be solvable.

There is the following result:
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THEOREM 6.4 (FEIT-THOMPSON). Every finite group of odd order is solvable.

PROOF. The proof occupies an entire issue of the Pacific Journal of Mathematics (Feit,
Walter, and Thompson, John G., Solvability of groups of odd order. Pacific J. Math. 13
(1963), 775–1029).

This theorem played a very important role in the development of group theory, because
it shows that every noncommutative finite simple group contains an element of order2.
It was a starting point in the program that eventually led to the classification of all finite
simple groups. See the article cited on p34.

EXAMPLE 6.5. Consider the subgroupsB =

{(
∗ ∗
0 ∗

)}
andU =

{(
1 ∗
0 1

)}
of

GL2(k), some fieldk. ThenU is a normal subgroup ofB, andB/U ∼= k× × k×, U ∼=
(k, +). HenceB is solvable.

PROPOSITION6.6. (a) Every subgroup and every quotient group of a solvable group is
solvable.

(b) An extension of solvable groups is solvable.

PROOF. (a) LetG B G1 B · · · B Gn be a solvable series forG, and letH be a subgroup
of G. The homomorphism

x 7→ xGi+1 : H ∩Gi → Gi/Gi+1

has kernel(H ∩ Gi) ∩ Gi+1 = H ∩ Gi+1. Therefore,H ∩ Gi+1 is a normal subgroup of
H ∩ Gi and the quotientH ∩ Gi/H ∩ Gi+1 injects intoGi/Gi+1, which is commutative.
We have shown that

H B H ∩G1 B · · · B H ∩Gn

is a solvable series forH.
Let G be a quotient group ofG, and letGi be the image ofGi in G. Then

G B G1 B · · · B Gn = {1}

is a solvable series forG.
(b) Let N be a normal subgroup ofG, and letG = G/N . We have to show that ifN

andG are solvable, then so also isG. Let

G B G1 B · · · B Gn = {1}

N B N1 B · · · B Nm = {1}

be a solvable series forG and N , and letGi be the inverse image ofGi in G. Then
Gi/Gi+1 ≈ Gi/Gi+1 (see 3.4), and so

G B G1 B · · · B Gn(= N) B N1 B · · · B Nm

is a solvable series forG.
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COROLLARY 6.7. A finitep-group is solvable.

PROOF. We use induction on the order the groupG. According to (4.15), the centreZ(G)
of G is nontrivial, and so the induction hypothesis implies thatG/Z(G) is solvable. Be-
causeZ(G) is commutative, (b) of the proposition shows thatG is solvable.

Let G be a group. Recall that the commutator ofx, y ∈ G is

[x, y] = xyx−1y−1 = xy(yx)−1

Thus
[x, y] = 1 ⇐⇒ xy = yx,

andG is commutative if and only if every commutator equals1.

EXAMPLE 6.8. For any finite-dimensional vector spaceV over a fieldk and any full flag
F = {Vn, Vn−1, . . .} in V , the group

B(F ) = {α ∈ Aut(V ) | α(Vi) ⊂ Vi all i}

is solvable. Indeed, letU(F ) be the group defined in Example 5.10. ThenB(F )/U(F ) is
commutative, and, whenk = Fp, U(F ) is a p-group. This proves thatB(F ) is solvable
whenk = Fp, and we leave the general case as an exercise.

For any homomorphismϕ : G → H

ϕ([x, y]) = ϕ(xyx−1y−1) = [ϕ(x), ϕ(y)],

i.e.,ϕ maps the commutator ofx, y to the commutator ofϕ(x), ϕ(y). In particular, we see
that if H is commutative, thenϕ maps all commutators inG to 1.

The groupG′ generated by the commutators inG is called thecommutatoror first
derived subgroupof G.

PROPOSITION6.9. The commutator subgroupG′ is a characteristic subgroup ofG; it is
the smallest normal subgroup ofG such thatG/G′ is commutative.

PROOF. An automorphismα of G maps the generating set forG′ into G′, and hence maps
G′ into G′. Since this is true for all automorphisms ofG, G′ is characteristic (see p28).

Write g 7→ g for the homomorphismg 7→ gG′ : G → G/G′. As for any homomor-
phism,[g, h] 7→ [g, h], but, in this case, we know[g, h] 7→ 1. Hence[g, h] = 1 for all g,
h ∈ G/G′, which shows thatG/G′ is commutative.

LetN be a second normal subgroup ofG such thatG/N is commutative. Then[g, h] 7→
1 in G/N , and so[g, h] ∈ N . Since these elements generateG′, N ⊃ G′.

For n ≥ 5, An is the smallest normal subgroup ofSn giving a commutative quotient.
Hence(Sn)′ = An.

Thesecond derived subgroupof G is (G′)′; thethird is G(3) = (G′′)′; and so on. Since
a characteristic subgroup of a characteristic subgroup is characteristic (3.12a), each derived
groupG(n) is a characteristic subgroup ofG. Hence we obtain a normal series

G ⊃ G′ ⊃ G(2) ⊃ · · · ,
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which is called thederived series. For example, whenn ≥ 5, the derived series ofSn is

Sn ⊃ An ⊃ An ⊃ An ⊃ · · · .

PROPOSITION6.10. A groupG is solvable if and only if itskth derived subgroupG(k) = 1
for somek.

PROOF. If G(k) = 1, then the derived series is a solvable series forG. Conversely, let

G = G0 B G1 B G2 B · · · B Gs = 1

be a solvable series forG. BecauseG/G1 is commutative,G1 ⊃ G′. Now G′G2 is a
subgroup ofG1, and from

G′/G′ ∩G2

∼=→ G′G2/G2 ⊂ G1/G2

we see that

G1/G2 commutative⇒ G′/G′ ∩G2 commutative⇒ G′′ ⊂ G′ ∩G2 ⊂ G2.

Continuing in the fashion, we find thatG(i) ⊂ Gi for all i, and henceG(s) = 1.

Thus, a solvable groupG has acanonicalsolvable series, namely the derived series, in
which all the groups are normal inG. The proof of the proposition shows that the derived
series is the shortest solvable series forG. Its length is called thesolvable lengthof G.

Nilpotent groups

Let G be a group. Recall that we writeZ(G) for the centre ofG. Let Z2(G) ⊃ Z(G) be
the subgroup ofG corresponding toZ(G/Z(G)). Thus

g ∈ Z2(G) ⇐⇒ [g, x] ∈ Z(G) for all x ∈ G.

Continuing in this fashion, we get a sequence of subgroups (ascending central series)

{1} ⊂ Z(G) ⊂ Z2(G) ⊂ · · ·

where
g ∈ Zi(G) ⇐⇒ [g, x] ∈ Zi−1(G) for all x ∈ G.

If Zm(G) = G for somem, thenG is said to benilpotent, and the smallest suchm is called
the(nilpotency) classof G. For example, all finitep-groups are nilpotent (apply 4.15).

For example, only the group{1} has class0, and the groups of class1 are exactly the
commutative groups. A groupG is of class2 if and only if G/Z(G) is commutative —
such a group is said to bemetabelian.
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EXAMPLE 6.11. (a) A nilpotent group is obviously solvable, but the converse is false. For
example, for a fieldk, let

B =

{(
a b
0 c

)∣∣∣∣ a, b, c ∈ k, ac 6= 0

}
.

ThenZ(B) = {aI | a 6= 0}, and the centre ofB/Z(B) is trivial. ThereforeB/Z(B) is not
nilpotent, but we saw in (6.5) that it is solvable.

(b) The groupG =
{(

1 ∗ ∗
0 1 ∗
0 0 1

)}
is metabelian: its centre is

{(
1 0 ∗
0 1 0
0 0 1

)}
, andG/Z(G) is

commutative.
(c) Any nonabelian groupG of orderp3 is metabelian. In fact,G′ = Z(G) has order

p (see 5.15), andG/G′ is commutative (4.17). In particular, the quaternion and dihedral
groups of order8, Q andD4, are metabelian. The dihedral groupD2n is nilpotent of class
n — this can be proved by induction, using thatZ(D2n) has order2, andD2n/Z(D2n) ≈
D2n−1 . If n is not a power of2, thenDn is not nilpotent (use Theorem 6.17 below).

PROPOSITION6.12. (a) A subgroup of a nilpotent group is nilpotent.
(b) A quotient of a nilpotent group is nilpotent.

PROOF. (a) Let H be a subgroup of a nilpotent groupG. Clearly,Z(H) ⊃ Z(G) ∩ H.
Assume (inductively) thatZi(H) ⊃ Zi(G) ∩H; thenZi+1(H) ⊃ Zi+1(G) ∩H, because
(for h ∈ H)

h ∈ Zi+1(G) ⇒ [h, x] ∈ Zi(G) all x ∈ G ⇒ [h, x] ∈ Zi(H) all x ∈ H.

(b) Straightforward.

REMARK 6.13. It is worth noting that ifH is a subgroup ofG, thenZ(H) may be bigger
thanZ(G). For example

H =

{(
a 0
0 b

)∣∣∣∣ ab 6= 0

}
⊂ GL2(k).

is commutative, i.e.,Z(H) = H, but the centre ofG consists of only of the scalar matrices.

PROPOSITION6.14. A groupG is nilpotent of class≤ m if and only if

[. . . [[g1, g2], g3], . . . , , gm+1] = 1

for all g1, ..., gm+1 ∈ G.

PROOF. Recall,g ∈ Zi(G) ⇐⇒ [g, x] ∈ Zi−1(G) for all x ∈ G.
AssumeG is nilpotent of class≤ m; then

G = Zm(G) ⇒ [g1, g2] ∈ Zm−1(G) all g1, g2 ∈ G

⇒ [[g1, g2], g3] ∈ Zm−2(G) all g1, g2, g3 ∈ G

· · · · · ·
⇒ [· · · [[g1, g2], g3], ..., gm] ∈ Z(G) all g1, . . . , gm ∈ G

⇒ [· · · [[g1, g2], g3], . . . , gm+1] = 1 all g1, . . . , gm ∈ G.
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For the converse, letg1 ∈ G. Then

[...[[g1, g2], g3], ..., gm], gm+1] =1 for all g1, g2, ..., gm+1 ∈ G

⇒ [...[[g1, g2], g3], ..., gm] ∈ Z(G), for all g1, ..., gm ∈ G

⇒ [...[[g1, g2], g3], ..., gm−1] ∈ Z2(G), for all g1, ..., gm−1 ∈ G

· · · · · ·
⇒ g1 ∈ Zm(G) all g1 ∈ G.

An extension of nilpotent groups need not be nilpotent, i.e.,

N andG/N nilpotent ; G nilpotent. (4)

For example, the subgroupU of the groupB in Examples 6.5 and 6.11 is commutative and
B/U is commutative, butB is not nilpotent.

However, the implication (4) holds whenN is contained in the centre ofG. In fact, we
have the following more precise result.

COROLLARY 6.15. For any subgroupN of the centre ofG,

G/N nilpotent of classm ⇒ G nilpotent of class≤ m + 1.

PROOF. Write π for the mapG → G/N . Then

π([...[[g1, g2], g3], ..., gm], gm+1]) = [...[[πg1, πg2], πg3], ..., πgm], πgm+1] = 1

all g1, ..., gm+1 ∈ G. Hence[...[[g1, g2], g3], ..., gm], gm+1] ∈ N ⊂ Z(G), and so

[...[[g1, g2], g3], ..., gm+1], gm+2] = 1 all g1, ..., gm+2 ∈ G.

COROLLARY 6.16. A finitep-group is nilpotent.

PROOF. We use induction on the order ofG. BecauseZ(G) 6= 1, G/Z(G) nilpotent,
which implies thatG is nilpotent.

Recall that an extension
1 → N

ι→ G
π→ Q → 1

is central ifι(N) ⊂ Z(G). Then:

the nilpotent groups are those that can be obtained from commutative groups
by successive central extensions.

Contrast:

the solvable groups are those that can be obtained from commutative groups
by successive extensions (not necessarily central).
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THEOREM 6.17. A finite group is nilpotent if and only if it is equal to a direct product of
its Sylow subgroups.

PROOF. A direct product of nilpotent groups is (obviously) nilpotent, and so the “if” di-
rection follows from the preceding corollary. For the converse, letG be a finite nilpotent
group. According to (5.9) it suffices to prove that all Sylow subgroups are normal. Let
P be such a subgroup ofG, and letN = NG(P ). The first lemma below shows that
NG(N) = N , and the second then implies thatN = G, i.e., thatP is normal inG.

LEMMA 6.18. LetP be a Sylowp-subgroup of a finite groupG. For any subgroupH of G
containingNG(P ), we haveNG(H) = H.

PROOF. Let g ∈ NG(H), so thatgHg−1 = H. ThenH ⊃ gPg−1 = P ′, which is a Sylow
p-subgroup ofH. By Sylow II, hP ′h−1 = P for someh ∈ H, and sohgPg−1h−1 ⊂ P .
Hencehg ∈ NG(P ) ⊂ H, and sog ∈ H.

LEMMA 6.19. LetH be proper subgroup of a finite nilpotent groupG; thenH 6= NG(H).

PROOF. The statement is obviously true for commutative groups, and so we can assume
G to be noncommutative. We use induction on the order ofG. BecauseG is nilpotent,
Z(G) 6= 1. Certainly the elements ofZ(G) normalizeH, and so ifZ(G) * H, we have
H $ Z(G) ·H ⊂ NG(H). Thus we may supposeZ(G) ⊂ H. Then the normalizer ofH
in G corresponds under (3.3) to the normalizer ofH/Z(G) in G/Z(G), and we can apply
the induction hypothesis.

REMARK 6.20. For a finite abelian groupG we recover the fact thatG is a direct product
of its p-primary subgroups.

PROPOSITION6.21 (FRATTINI ’ S ARGUMENT). Let H be a normal subgroup of a finite
groupG, and letP be a Sylowp-subgroup ofH. ThenG = H ·NG(P ).

PROOF. Let g ∈ G. ThengPg−1 ⊂ gHg−1 = H, and bothgPg−1 andP are Sylow
p-subgroups ofH. According to Sylow II, there is anh ∈ H such thatgPg−1 = hPh−1,
and it follows thath−1g ∈ NG(P ) and sog ∈ H ·NG(P ).

THEOREM 6.22. A finite group is nilpotent if and only if every maximal proper subgroup
is normal.

PROOF. We saw in Lemma 6.19 that for any proper subgroupH of a nilpotent groupG,
H $ NG(H). Hence,

H maximal⇒ NG(H) = G,

i.e.,H is normal inG.
Conversely, suppose every maximal proper subgroup ofG is normal. We shall check

the condition of Theorem 6.17. Thus, letP be a Sylowp-subgroup ofG. If P is not normal
in G, then there exists a maximal proper subgroupH of G containingNG(P ). Being
maximal,H is normal, and so Frattini’s argument shows thatG = H · NG(P ) = H —
contradiction.
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Groups with operators

Recall that the setAut(G) of automorphisms of a groupG is again a group. LetA be a
group. A pair(G, ϕ) consisting of a groupG together with a homomorphismϕ : A →
Aut(G) is called anA-group, or G is said to haveA as agroup of operators.

Let G be anA-group, and writeαx for ϕ(α)x. Then
(a) (αβ)x = α(βx) (ϕ is a homomorphism);
(b) α(xy) = αx · αy (ϕ(α) is a homomorphism);
(c) 1x = x (ϕ is a homomorphism).

Conversely, a map(α, x) 7→ αx : A × G → G satisfying (a), (b), (c) arises from a
homomorphismA → Aut(G). Conditions (a) and (c) show thatx 7→ αx is inverse to
x 7→ (α−1)x, and sox 7→ αx is a bijectionG → G. Condition (b) then shows that it is an
automorphism ofG. Finally, (a) shows that the mapϕ(α) = (x 7→ αx) is a homomorphism
A → Aut(G).

Let G be a group with operatorsA. A subgroupH of G is admissibleor anA-invariant
subgroupif

x ∈ H ⇒ αx ∈ H, all α ∈ A.

An intersection of admissible groups is admissible. IfH is admissible, so also are its
normalizerNG(H) and centralizerCG(H).

An A-homomorphism(or admissible homomorphism) of A-groups is a homomor-
phismγ : G → G′ such thatγ(αg) = αγ(g) for all α ∈ A, g ∈ G.

EXAMPLE 6.23. (a) A groupG can be regarded as a group with{1} as group of operators.
In this case all subgroups and homomorphisms are admissible, and so the theory of groups
with operators includes the theory of groups without operators.

(b) ConsiderG with G acting by conjugation, i.e., considerG together with

g 7→ ig : G → Aut(G).

In this case, the admissible subgroups are the normal subgroups.
(c) ConsiderG with A = Aut(G) as group of operators. In this case, the admissible

subgroups are the characteristic subgroups.
Almost everything we have proved in this course for groups also holds for groups with

operators. In particular, the Isomorphism Theorems 3.1, 3.2, and 3.3 hold for groups with
operators. In each case, the proof is the same as before except that admissibility must be
checked.

THEOREM 6.24. For any admissible homomorphismγ : G → G′ of A-groups, N
df
=

Ker(γ) is an admissible normal subgroup ofG, γ(G) is an admissible subgroup ofG′,
andγ factors in a natural way into the composite of an admissible surjection, an admissi-
ble isomorphism, and an admissible injection:

G � G/N
∼=→ γ(G) ↪→ G′.

THEOREM 6.25. Let G be a group with operatorsA, and letH and N be admissible
subgroups withN normal. ThenH ∩ N is normal admissible subgroup ofH, HN is an
admissible subgroup ofG, andh(H ∩ N) 7→ hH is an admissible isomorphismH/H ∩
N → HN/N.



6 NORMAL SERIES; SOLVABLE AND NILPOTENT GROUPS 71

THEOREM 6.26. Let ϕ : G → G be a surjective admissible homomorphism ofA-groups.
Under the one-to-one correspondenceH ↔ H between the set of subgroups ofG contain-
ing Ker(ϕ) and the set of subgroups ofG (see 3.3), admissible subgroups correspond to
admissible subgroups.

Let ϕ : A → Aut(G) be a group withA operating. Anadmissible normal seriesis a
chain of admissible subgroups ofG

G ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gr

with eachGi normal in Gi−1. Define similarly an admissible composition series. The
quotients of an admissible normal series areA-groups, and the quotients of an admissible
composition series are simpleA-groups, i.e., they have no normal admissible subgroups
apart from the obvious two.

The Jordan-Ḧolder theorem continues to hold forA-groups. In this case the isomor-
phisms between the corresponding quotients of two composition series are admissible. The
proof is the same as that of the original theorem, because it uses only the isomorphism
theorems, which we have noted also hold forA-groups.

EXAMPLE 6.27. (a) ConsiderG with G acting by conjugation. In this case an admissible
normal series is a sequence of subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gs = {1},

with eachGi normal inG. (This is whatshouldbe called a normal series.) The action of
G on Gi by conjugation passes to the quotient, to give an action ofG on Gi/Gi+1. The
quotients of two admissible normal series are isomorphic asG-groups.

(b) ConsiderG with A = Aut(G) as operator group. In this case, an admissible normal
series is a sequence

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gs = {1}

with eachGi a characteristic subgroup ofG.

Krull-Schmidt theorem

A groupG is indecomposableif G 6= 1 andG is not isomorphic to a direct product of two
nontrivial groups, i.e., if

G ≈ H ×H ′ ⇒ H = 1 or H ′ = 1.

EXAMPLE 6.28. (a) A simple group is indecomposable, but an indecomposable group need
not be simple: it may have a normal subgroup. For example,S3 is indecomposable but has
C3 as a normal subgroup.

(b) A finite commutative group is indecomposable if and only if it is cyclic of prime-
power order.

Of course, this is obvious from the classification, but it is not difficult to prove it directly.
Let G be cyclic of orderpn, and suppose thatG ≈ H × H ′. ThenH andH ′ must bep-
groups, and they can’t both be killed bypm, m < n. It follows that one must be cyclic
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of orderpn, and that the other is trivial. Conversely, suppose thatG is commutative and
indecomposable. Since every finite commutative group is (obviously) a direct product of
p-groups withp running over the primes,G is ap-group. Ifg is an element ofG of highest
order, one shows that〈g〉 is a direct factor ofG, G ≈ 〈g〉 ×H, which is a contradiction.

(c) Every finite group can be written as a direct product of indecomposable groups
(obviously).

Recall (3.8) that whenG1, G2, . . . , Gr are subgroups ofG such that the map

(g1, g2, ..., gr) 7→ g1g2 · · · gr : G1 ×G2 × · · · ×Gr → G

is an isomorphism, we say thatG is the direct product of its subgroupsG1, . . . , Gr, and we
write

G = G1 ×G2 × · · · ×Gr.

THEOREM 6.29 (KRULL-SCHMIDT). Let

G = G1 × · · · ×Gs and G = H1 × · · · ×Ht

be two decompositions ofG into direct products of indecomposable subgroups. Thens = t,
and there is a re-indexing such thatGi ≈ Hi. Moreover, givenr, we can arrange the
numbering so that

G = G1 × · · · ×Gr ×Hr+1 × · · · ×Ht.

PROOF. See Rotman 1995, 6.36.

EXAMPLE 6.30. LetG = Fp × Fp, and think of it as a two-dimensional vector space over
Fp. Let

G1 = 〈(1, 0)〉, G2 = 〈(0, 1)〉; H1 = 〈(1, 1)〉, H2 = 〈(1,−1)〉.

ThenG = G1 ×G2, G = H1 ×H2, G = G1 ×H2.

REMARK 6.31. (a) The Krull-Schmidt theorem holds also for an infinite group provided it
satisfies both chain conditions on subgroups, i.e., ascending and descending sequences of
subgroups ofG become stationary.

(b) The Krull-Schmidt theorem also holds for groups with operators. For example,
let Aut(G) operate onG; then the subgroups in the statement of the theorem will all be
characteristic.

(c) When applied to a finite abelian group, the theorem shows that the groupsCmi
in a

decompositionG = Cm1 × ...×Cmr with eachmi a prime power are uniquely determined
up to isomorphism (and ordering).

Further reading

For more on abstract groups, see Rotman 1995.
For an introduction to the theory of algebraic groups, see: Curtis, Morton L., Matrix

groups. Second edition. Universitext. Springer-Verlag, New York, 1984.
For the representation theory of groups, see: Serre, Jean-Pierre, Linear Representations

of Finite Groups. Graduate Texts in Mathematics: Vol 42, Springer, 1987.
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A Solutions to Exercises

These solutions fall somewhere between hints and complete solutions. Students were ex-
pected to write out complete solutions.

1. By inspection, the only element of order2 is c = a2 = b2. Sincegcg−1 also has order2,
it must equalc, i.e.,gcg−1 = c for all g ∈ Q. Thusc commutes with all elements ofQ, and
{1, c} is a normal subgroup ofQ. The remaining subgroups have orders1, 4, or 8, and are
automatically normal (see 1.24a).

2. The elementab =

(
1 1
0 1

)
, and

(
1 1
0 1

)n

=

(
1 n
0 1

)
.

3. Consider the subsets{g, g−1} of G. Each set has exactly2 elements unlessg has order1
or 2, in which case it has1 element. SinceG is a disjoint union of these sets, there must be
a (nonzero) even number of sets with1 element, and hence at least one element of order2.

4. Because the groupG/N has ordern, (gN)n = 1 for everyg ∈ G (Lagrange’s theorem).
But (gN)n = gnN , and sogn ∈ N . For the second statement, considerN = {1, τ} ⊂ D3.
It has index3, but the elementτσ has order2, and so(τσ)3 = τσ /∈ N .

5. Note first that any group generated by a commuting set of elements must be commu-
tative, and so the groupG in the problem is commutative. According to (2.9), any map
{a1, . . . , an} → A with A commutative extends uniquely to homomorphismG → A, and
soG has the universal property that characterizes the free abelian group on the generators
ai.

6. (a) If a 6= b, then the worda · · · ab−1 · · · b−1 is reduced and6= 1. Therefore, ifanb−n = 1,
thena = b. (b) is similar. (c) The reduced form ofxn, x 6= 1, has length at leastn.

7. (a) Universality. (b)C∞ × C∞ is commutative, and the only commutative free groups
are1 andC∞. (c) Supposea is a nonempty reduced word inx1, . . . , xn, saya = xi · · · (or
x−1

i · · · ). For j 6= i, the reduced form of[xj, a] =df xjax−1
j a−1 can’t be empty, and soa

andxj don’t commute.

8. The unique element of order2 is b2. The quotient groupQn/〈b2〉 has generatorsa andb,
and relationsa2n−2

= 1, b2 = 1, bab−1 = a−1, which is a presentation forD2n−2 (see 2.10).

9. (a) A comparison of the presentationD4 = 〈σ4, τ 2, τστσ = 1〉 with that forG suggests
puttingσ = ab andτ = a. Check (using 2.9) that there are homomorphisms:

D4 → G, σ 7→ ab, τ 7→ a, G → D4, a 7→ τ, b 7→ τ−1σ.

The compositesD4 → G → D4 andG → D4 → G are the both the identity map on
generating elements, and therefore (2.9 again) are identity maps. (b) Omit.

10. The hint givesab3a−1 = bc3b−1. But b3 = 1. Soc3 = 1. Sincec4 = 1, this forces
c = 1. Fromacac−1 = 1 this givesa2 = 1. But a3 = 1. Soa = 1. The final relation then
givesb = 1.

11. The elementsx2, xy, y2 lie in the kernel, and it is easy to see that〈x, y|x2, xy, y2〉 has
order (at most)2, and so they must generate the kernel (at least as a normal group — the
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problem is unclear). One can prove directly that these elements are free, or else apply the
Nielsen-Schreier theorem (2.6). Note that the formula on p. 18 (correctly) predicts that the
kernel is free of rank2 · 2− 2 + 1 = 3

12. We have to show that ifs andt are elements of a finite group satisfyingt−1s3t = s5,
then the given elementg is equal to1. So,sn = 1 for somen. The interesting case is when
(3, n) = 1. But in this case,s3r = s for somer. Hencet−1s3rt = (t−1s3t)r = s5r. Now,

g = s−1(t−1s−1t)s(t−1st) = s−1s−5rss5r = 1;

done. [In such a question, look for a pattern. I also took a while to see it, but what eventually
clicked was thatg had two conjugates in it, as did the relation forG. So I tried to relate
them.]

13. The key point is that〈a〉 = 〈a2〉 × 〈an〉. Apply (3.5) to see thatD2n breaks up as a
product.

14. Let N be the unique subgroup of order2 in G. ThenG/N has order4, but there is no
subgroupQ ⊂ G of order4 with Q ∩ N = 1 (because every group of order4 contains a
group of order2), and soG 6= N o Q for anyQ. A similar argument applies to subgroups
N of order4.

15. For anyg ∈ G, gMg−1 is a subgroup of orderm, and therefore equalsM . ThusM
(similarly N ) is normal inG, andMN is a subgroup ofG. The order of any element of
M ∩ N dividesgcd(m,n) = 1, and so equals1. Now (3.6) shows thatM × N ≈ MN ,
which therefore has ordermn, and so equalsG.

16. Show thatGL2(F2) permutes the3 nonzero vectors inF2
2 (2-dimensional vector space

overF2).

17. Omit. [If anyone has a neat solution, please send it to me.]

18. The pair

N =
{(

1 0 b
0 1 c
0 0 1

)}
andQ =

{(
a 0 0
0 a 0
0 0 d

)}
satisfies the conditions (i), (ii), (iii) of (3.13). For example, for (i) (Maple says that)(

a 0 b
0 a c
0 0 d

) (
1 0 b
0 1 c
0 0 1

) (
a 0 b
0 a c
0 0 d

)−1

=

(
1 0 − b

d
+ 1

d
(b+ab)

0 1 − c
d
+ 1

d
(c+ac)

0 0 1

)
It is not a direct product of the two groups because it is not commutative.

19. Let g generateC∞. Then the only other generator isg−1, and the only nontrivial
automorphism isg 7→ g−1. HenceAut(C∞) = {±1}. The homomorphismS3 → Aut(S3)
is injective becauseZ(S3) = 1, but S3 has exactly3 elementsa1, a2, a3 of order2 and2
elementsb, b2 of order3. The elementsa1, b generateS3, and there are only6 possibilities
for α(a1), α(b), and soS3 → Aut(S3) is also onto.

20. Let H be a proper subgroup ofG, and letN = NG(H). The number of conjugates of
H is (G : N) ≤ (G : H) (see 4.8). Since each conjugate ofH has(H : 1) elements and
the conjugates overlap (at least) in{1}, we see that

#
⋃

gHg−1 < (G : H)(H : 1) = (G : 1).
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For the second part, chooseS to be a set of representatives for the conjugacy classes.

21. According to 4.16, 4.17, there is a normal subgroupN of orderp2, which is commuta-
tive. Now show thatG has an elementc of orderp not inN , and deduce thatG = N o 〈c〉,
etc..

22. Let H be a subgroup of indexp, and letN be the kernel ofG → Sym(G/H) — it is
the largest normal subgroup ofG contained inH (see 4.20). IfN 6= H, then(H : N) is
divisible by a primeq ≥ p, and(G : N) is divisible bypq. But pq doesn’t dividep! —
contradiction.

23. EmbedG into S2m, and letN = A2m ∩ G. ThenG/N ↪→ S2m/A2m = C2, and so
(G : N) ≤ 2. Let a be an element of order2 in G, and letb1, . . . , bm be a set of right
coset representatives for〈a〉 in G, so thatG = {b1, ab1, . . . , bm, abm}. The image ofa in
S2m is the product of them transpositions(b1, ab1), . . . , (bm, abm), and sincem is odd, this
implies thata /∈ N .

24. (a) The number of possible first rows is23 − 1; of second rows23 − 2; of third rows
23 − 22; whence(G : 1) = 7× 6× 4 = 168.
(b) Let V = F3

2. Then#V = 23 = 8. Each line through the origin contains exactly one
point 6= origin, and so#X = 7.
(c) We make a list of possible characteristic and minimal polynomials:

Characteristic poly. Min’l poly. Size Order of element in class
1 X3 + X2 + X + 1 X + 1 1 1
2 X3 + X2 + X + 1 (X + 1)2 21 2
3 X3 + X2 + X + 1 (X + 1)3 42 4
4 X3 + 1 = (X + 1)(X2 + X + 1) Same 56 3
5 X3 + X + 1 (irreducible) Same 24 7
6 X3 + X2 + 1 (irreducible) Same 24 7

Here size denotes the number of elements in the conjugacy class.
Case 5:Let α be an endomorphism with characteristic polynomialX3 + X + 1. Check
from its minimal polynomial thatα7 = 1, and soα has order7. Note thatV is a free
F2[α]-module of rank one, and so the centralizer ofα in G is F2[α] ∩ G = 〈α〉. Thus
#CG(α) = 7, and the number of elements in the conjugacy class ofα is 168/7 = 24.
Case 6:Exactly the same as Case 5.
Case 4:HereV = V1 ⊕ V2 as anF2[α]-module, and

EndF2[α](V ) = EndF2[α](V1)⊕ EndF2[α](V2).

Deduce that#CG(α) = 3, and so the number of conjugates ofα is 168
3

= 56.
Case 3:HereCG(α) = F2[α] ∩G = 〈α〉, which has order4.
Case 1:Hereα is the identity element.
Case 2:HereV = V1 ⊕ V2 as anF2[α]-module, whereα acts as1 on V1 and has minimal
polynomialX2 + 1 onV2. Either analyse, or simply note that this conjugacy class contains
all the remaining elements.
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(d) Since168 = 23 × 3× 7, a proper nontrivial subgroupH of G will have order

2, 4, 8, 3, 6, 12, 24, 7, 14, 28, 56, 21, 24, or 84.

If H is normal, it will be a disjoint union of{1} and some other conjugacy classes, and so
(N : 1) = 1 +

∑
ci with ci equal to 21, 24, 42, or 56, but this doesn’t happen.

25. SinceG/Z(G) ↪→ Aut(G), we see thatG/Z(G) is cyclic, and so by (4.18) thatG is
commutative. IfG is finite and not cyclic, it has a factorCpr × Cps etc..

26. Clearly (ij) = (1j)(1i)(1j). Hence any subgroup containing(12), (13), . . . contains
all transpositions, and we knowSn is generated by transpositions.

27. Note thatCG(x) ∩ H = CH(x), and soH/CH(x) ≈ H · CG(x)/CG(x)). Prove each
class has the same numberc of elements. Then

#K = (G : CG(x)) = (G : H · CG(x))(H · CG(x) : CG(x)) = kc.

28. (a) The first equivalence follows from the preceding problem. For the second, note that
σ commutes with all cycles in its decomposition, and so they must be even (i.e., have odd
length); if two cycles have the same odd lengthk, one can find a product ofk transpositions
which interchanges them, and commutes withσ; conversely, show that if the partition ofn
defined byσ consists of distinct integers, thenσ commutes only with the group generated
by the cycles in its cycle decomposition.

(b) List of conjugacy classes inS7, their size, parity, and (when the parity is even)
whether it splits inA7.

Cycle Size Parity Splits inA7? C7(σ) contains
1 (1) 1 E N
2 (12) 21 O
3 (123) 70 E N (67)
4 (1234) 210 O
5 (12345) 504 E N (67)
6 (123456) 840 O
7 (1234567) 720 E Y 720 doesn’t divide 2520
8 (12)(34) 105 E N (67)
9 (12)(345) 420 O
10 (12)(3456) 630 E N (12)
11 (12)(3456) 504 O
12 (123)(456) 280 E N (14)(25)(36)
13 (123)(4567) 420 O
14 (12)(34)(56) 105 O
15 (12)(34)(567) 210 E N (12)

29. According to Maple,n = 6, a 7→ (13)(26)(45), b 7→ (12)(34)(56).

30. SinceStab(gx0) = g Stab(x0)g
−1, if H ⊂ Stab(x0) thenH ⊂ Stab(x) for all x, and

soH = 1, contrary to hypothesis. NowStab(x0) is maximal, and soH · Stab(x0) = G,
which shows thatH acts transitively.
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B Review Problems

34. Prove that a finite groupG having just one maximal subgroup must be a cyclicp-group,
p prime.

35. Let a andb be two elements ofS76. If a andb both have order146 andab = ba, what
are the possible orders of the productab?

37. Suppose that the groupG is generated by a setX.
(a) Show that ifgxg−1 ∈ X for all x ∈ X, g ∈ G, then the commutator subgroup ofG

is generated by the set of all elementsxyx−1y−1 for x, y ∈ X.
(b) Show that ifx2 = 1 for all x ∈ X, then the subgroupH of G generated by the set of

all elementsxy for x, y ∈ X has index1 or 2.

38. Supposep ≥ 3 and2p − 1 are both prime numbers (e.g.,p = 3, 7, 19, 31, . . .). Prove,
or disprove by example, that every group of orderp(2p− 1) is commutative.

39. Let H be a subgroup of a groupG. Prove or disprove the following:
(a) If G is finite andP is a Sylowp-subgroup, thenH ∩ P is a Sylowp-subgroup ofH.
(b) If G is finite,P is a Sylowp-subgroup, andH ⊃ NG(P ), thenNG(H) = H.
(c) If g is an element ofG such thatgHg−1 ⊂ H, theng ∈ NG(H).

40. Prove that there is no simple group of order616.

41. Let n andk be integers1 ≤ k ≤ n. Let H be the subgroup ofSn generated by the
cycle (a1 . . . ak). Find the order of the centralizer ofH in Sn. Then find the order of the
normalizer ofH in Sn. [The centralizerof H is the set ofg ∈ G suchghg=1 = h for all
h ∈ H. It is again a subgroup ofG.]

42. Prove or disprove the following statement: ifH is a subgroup of an infinite groupG,
then for allx ∈ G, xHx−1 ⊂ H =⇒ x−1Hx ⊂ H.

43. Let H be a finite normal subgroup of a groupG, and letg be an element ofG. Suppose
thatg has ordern and that the only element ofH that commutes withg is 1. Show that:

(a) the mappingh 7→ g−1h−1gh is a bijection fromH to H;
(b) the cosetgH consists of elements ofG of ordern.

44. Show that if a permutation in a subgroupG of Sn mapsx to y, then the normalizers of
the stabilizersStab(x) andStab(y) of x andy have the same order.

45. Prove that if all Sylow subgroups of a finite groupG are normal and abelian, then the
group is abelian.

46. A group is generated by two elementsa andb satisfying the relations:a3 = b2, am = 1,
bn = 1 wherem andn are positive integers. For what values ofm andn canG be infinite.

47. Show that the groupG generated by elementsx andy with defining relationsx2 =
y3 = (xy)4 = 1 is a finite solvable group, and find the order ofG and its successive derived
subgroupsG′, G′′, G′′′.

48. A groupG is generated by a normal setX of elements of order2. Show that the com-
mutator subgroupG′ of G is generated by all squares of productsxy of pairs of elements
of X.
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49. Determine the normalizerN in GLn(F ) of the subgroupH of diagonal matrices, and
prove thatN/H is isomorphic to the symmetric groupSn.

50. Let G be a group with generatorsx andy and defining relationsx2, y5, (xy)4. What is
the index inG of the commutator groupG′ of G.

51. Let G be a finite group, andH the subgroup generated by the elements of odd order.
Show thatH is normal, and that the order ofG/H is a power of2.

52. Let G be a finite group, andP a Sylowp-subgroup. Show that ifH is a subgroup ofG
such thatNG(P ) ⊂ H ⊂ G, then

(a) the normalizer ofH in G is H;
(b) (G : H) ≡ 1 (modp).

53. Let G be a group of order33 · 25. Show thatG is solvable. (Hint: A first step is to find
a normal subgroup of order11 using the Sylow theorems.)

54. Suppose thatα is an endomorphism of the groupG that mapsG ontoG and commutes
with all inner automorphisms ofG. Show that ifG is its own commutator subgroup, then
αx = x for all x in G.

55. Let G be a finite group with generatorss andt each of order2. Let n = (G : 1)/2.
(a) Show thatG has a cyclic subgroup of ordern. Now assumen odd.
(b) Describe all conjugacy classes ofG.
(c) Describe all subgroups ofG of the formC(x) = {y ∈ G|xy = yx}, x ∈ G.
(d) Describe all cyclic subgroups ofG.
(e) Describe all subgroups ofG in terms of (b) and (d).
(f) Verify that any twop-subgroups ofG are conjugate(p prime).

56. Let G act transitively on a setX. Let N be a normal subgroup ofG, and letY be the
set of orbits ofN in X. Prove that:

(a) There is a natural action ofG on Y which is transitive and shows that every orbit of
N onX has the same cardinality.

(b) Show by example that ifN is not normal then its orbits need not have the same
cardinality.

57. Prove that every maximal subgroup of a finitep-group is normal of prime index(p is
prime).

58. A groupG is metacyclicif it has a cyclic normal subgroupN with cyclic quotientG/N .
Prove that subgroups and quotient groups of metacyclic groups are metacyclic. Prove or
disprove that direct products of metacyclic groups are metacylic.

59. Let G be a group acting doubly transitively onX, and letx ∈ X. Prove that:
(a) The stabilizerGx of x is a maximal subgroup ofG.
(b) If N is a normal subgroup ofG, then eitherN is contained inGx or it acts transitively

onX.

60. Let x, y be elements of a groupG such thatxyx−1 = y5, x has order3, andy 6= 1 has
odd order. Find (with proof) the order ofy.

61. Let H be a maximal subgroup ofG, and letA be a normal subgroup ofH and such
that the conjugates ofA in G generate it.
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(a) Prove that ifN is a normal subgroup ofG, then eitherN ⊂ H or G = NA.
(b) LetM be the intersection of the conjugates ofH in G. Prove that ifG is equal to its

commutator subgroup andA is abelian, thenG/M is a simple group.

62. (a) Prove that the center of a nonabelian group of orderp3, p prime, has orderp.
(b) Exhibit a nonabelian group of order16 whose center is not cyclic.

63. Show that the group with generatorsα andβ and defining relations

α2 = β2 = (αβ)3 = 1

is isomorphic with the symmetric groupS3 of degree3 by giving, with proof, an explicit
isomorphism.

64. Prove or give a counter-example:
(a) Every group of order30 has a normal subgroup of order15.
(b) Every group of order30 is nilpotent.

65. Let t ∈ Z, and letG be the group with generatorsx, y and relationsxyx−1 = yt,
x3 = 1.

(a) Find necessary and sufficient conditions ont for G to be finite.
(b) In caseG is finite, determine its order.

66. Let G be a group of orderpq, p 6= q primes.
(a) ProveG is solvable.
(b) Prove thatG is nilpotent ⇐⇒ G is abelian⇐⇒ G is cyclic.
(c) IsG always nilpotent? (Prove or find a counterexample.)

67. Let X be a set withpn elements,p prime, and letG be a finite group acting transitively
onX. Prove that every Sylowp-subgroup ofG acts transitively onX.

68. Let G = 〈a, b, c | bc = cb, a4 = b2 = c2 = 1, aca−1 = c, aba−1 = bc〉. Determine the
order ofG and find the derived series ofG.

69. Let N be a nontrivial normal subgroup of a nilpotent groupG. Prove thatN ∩Z(G) 6=
1.

70. Do not assume Sylow’s theorems in this problem.
(a) LetH be a subgroup of a finite groupG, andP a Sylowp-subgroup ofG. Prove that

there exists anx ∈ G such thatxPx−1 ∩H is a Sylowp-subgroup ofH.

(b) Prove that the group ofn×n matrices

(
1 ∗ ...
0 1 ···

...
0 1

)
is a Sylowp-subgroup ofGLn(Fp).

(c) Indicate how (a) and (b) can be used to prove that any finite group has a Sylowp-
subgroup.

71. SupposeH is a normal subgroup of a finite groupG such thatG/H is cyclic of order
n, wheren is relatively prime to(G : 1). Prove thatG is equal to the semi-direct product
H o S with S a cyclic subgroup ofG of ordern.

72. Let H be a minimal normal subgroup of a finite solvable groupG. Prove thatH is
isomorphic to a direct sum of cyclic groups of orderp for some primep.
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73. (a) Prove that subgroupsA andB of a groupG are of finite index inG if and only if
A ∩B is of finite index inG.
(b) An elementx of a groupG is said to be anFC-elementif its centralizerCG(x) has finite
index inG. Prove that the set of allFC elements inG is a normal.

74. Let G be a group of orderp2q2 for primesp > q. Prove thatG has a normal subgroup
of orderpn for somen ≥ 1.

75. (a) LetK be a finite nilpotent group, and letL be a subgroup ofK such thatL·δK = K,
whereδK is the derived subgroup. Prove thatL = K. [You may assume that a finite group
is nilpotent if and only if every maximal subgroup is normal.]
(b) Let G be a finite group. IfG has a subgroupH such that bothG/δH and H are
nilpotent, prove thatG is nilpotent.

76. Let G be a finite noncyclicp-group. Prove that the following are equivalent:
(a) (G : Z(G)) ≤ p2.
(b) Every maximal subgroup ofG is abelian.
(c) There exist at least two maximal subgroups that are abelian.

77. Prove that every groupG of order 56 can be written (nontrivially) as a semidirect
product. Find (with proofs) two non-isomorphic non-abelian groups of order56.

78. Let G be a finite group andϕ : G → G a homomorphism.
(a) Prove that there is an integern ≥ 0 such thatϕn(G) = ϕm(G) for all integersm ≥ n.

Let α = ϕn.
(b) Prove thatG is the semi-direct product of the subgroupsKer α andIm α.
(c) Prove thatIm α is normal inG or give a counterexample.

79. Let S be a set of representatives for the conjugacy classes in a finite groupG and letH
be a subgroup ofG. Show thatS ⊂ H =⇒ H = G.

80. Let G be a finite group.
(a) Prove that there is a unique normal subgroupK of G such that (i)G/K is solvable

and (ii) if N is a normal subgroup andG/N is solvable, thenN ⊃ K.
(b) Show thatK is characteristic.
(c) Prove thatK = [K,K] and thatK = 1 or K is nonsolvable.
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C Two-Hour Examination

1. Which of the following statements are true (givebrief justifications for each of (a), (b),
(c), (d); give a correct set of implications for (e)).

(a) If a andb are elements of a group, thena2 = 1, b3 = 1 =⇒ (ab)6 = 1.
(b) The following two elements are conjugate inS7:(

1 2 3 4 5 6 7
3 4 5 6 7 2 1

)
,

(
1 2 3 4 5 6 7
2 3 1 5 6 7 4

)
.

(c) If G andH are finite groups andG× A594 ≈ H × A594, thenG ≈ H.
(d) The only subgroup ofA5 containing(123) is A5 itself.
(e) Nilpotent =⇒ cyclic =⇒ commutative=⇒ solvable (for a finite group).

2. How many Sylow11-subgroups can a group of order110 = 2 · 5 · 11 have? Classify
the groups of order110 containing a subgroup of order 10. Must every group of order 110
contain a subgroup of order 10?

3. Let G be a finite nilpotent group. Show that if every commutative quotient ofG is cyclic,
thenG itself is cyclic. Is the statement true for nonnilpotent groups?

4. (a) LetG be a subgroup ofSym(X), whereX is a set withn elements. IfG is commu-
tative and acts transitively onX, show that each elementg 6= 1 of G moves every element
of X. Deduce that(G : 1) ≤ n.
(b) For eachm ≥ 1, find a commutative subgroup ofS3m of order3m.
(c) Show that a commutative subgroup ofSn has order≤ 3

n
3 .

5. Let H be a normal subgroup of a groupG, and letP be a subgroup ofH. Assume that
every automorphism ofH is inner. Prove thatG = H ·NG(P ).

6. (a) Describe the group with generatorsx andy and defining relationyxy−1 = x−1.
(b) Describe the group with generatorsx and y and defining relationsyxy−1 = x−1,
xyx−1 = y−1.

You may use results proved in class or in the notes, but you should indicate clearly what
you are using.



C TWO-HOUR EXAMINATION 82

Solutions

1. (a) False: in〈a, b|a2, b3〉, ab has infinite order.
(b) True, the cycle decompositions are (1357)(246), (123)(4567).
(c) True, use the Krull-Schmidt theorem.
(d) False, the group it generates is proper.
(e) Cyclic =⇒ commutative=⇒ nilpotent =⇒ solvable.

2. The number of Sylow11-subgroupss11 = 1, 12, . . . and divides10. Hence there is only
one Sylow11-subgroupP . Have

G = P oθ H, P = C11, H = C10 or D5.

Now have to look at the mapsθ : H → Aut(C11) = C10. Yes, by the Schur-Zassenhaus
lemma.

3. SupposeG has class> 1. ThenG has quotientH of class2. Consider

1 → Z(H) → H → H/Z(H) → 1.

ThenH is commutative by (4.17), which is a contradiction. ThereforeG is commutative,
and hence cyclic.

Alternatively, by induction, which shows thatG/Z(G) is cyclic.
No! In fact, it’s not even true for solvable groups (e.g.,S3).

4. (a) If gx = x, thenghx = hgx = hx. Henceg fixes every element ofX, and sog = 1.
Fix anx ∈ X; theng 7→ gx : G → X is injective. [Note that Cayley’s theorem gives an
embeddingG ↪→ Sn, n = (G : 1).]

(b) Partition the set into subsets of order3, and letG = G1 × · · · ×Gm.
(c) Let O1, . . . , Or be the orbits ofG, and letGi be the image ofG in Sym(Oi). Then

G ↪→ G1 × · · · ×Gr, and so (by induction),

(G : 1) ≤ (G1 : 1) · · · (Gr : 1) ≤ 3
n1
3 · · · 3

nr
3 = 3

n
3 .

5. Let g ∈ G, and leth ∈ H be such that conjugation byh on H agrees with conjugation
by g. ThengPg−1 = hPh−1, and soh−1g ∈ NG(P ).

6. (a) It’s the group .
G = 〈x〉o 〈y〉 = C∞ oθ C∞

with θ : C∞ → Aut(C∞) = ±1. Alternatively, the elements can be written uniquely in the
form xiyj, i, j ∈ Z, andyx = x−1y.

(b) It’s the quaternion group. From the two relations get

yx = x−1y, yx = xy−1

and sox2 = y2. The second relation implies

xy2x−1 = y−2, = y2,

and soy4 = 1.
Alternatively, the Todd-Coxeter algorithm shows that it is the subgroup ofS8 generated

by (1287)(3465) and(1584)(2673).
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