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Notations.

We use the standard (Bourbaki) notations:

N=1{0,1,2,...},

7. = ring of integers,

R = field of real numbers,

C = field of complex numbers,

F, = Z/pZ = field with p elementsp a prime number.

Given an equivalence relatiofx| denotes the equivalence class containing
Throughout the noteg,is a prime number, i.ep = 2,3,5,7,11, .. ..
Let 7 and A be sets. A family of elements of indexed byI, denoted(a;);cs, is a
functioni — a;: I — A.
Rings are required to have an identity elem&énand homomorphisms of rings are
required to takd to 1.
X CY X isasubsetol (notnecessarily proper).

X2y Xis defined to bé&”, or equalsy” by definition.
X ~Y X isisomorphic toy.
X 2Y X andY are canonically isomorphic (or there is a given or unique isomorphism).
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1 Basic Definitions

Definitions

DEFINITION 1.1. Agroupis a nonempty set together with a law of compositiofa, b) —
axb:G x G — G satisfying the following axioms:
(a) (associative law) for all, b, c € G,

(axb)*xc=ax(bx*c);
(b) (existence of an identity element) there exists an element; such that
axe=aq=ex*xa

forall a € G}
(c) (existence of inverses) for eaghe G, there exists an’ € G such that

axa =e=d *a.

When (a) and (b) hold, but not necessarily (c), we @&llx) asemigrou;ﬂ

We usually abbreviaté?, %) to GG, and we usually write: « b ande respectively agb
and1, or asa + b and0.

Two groupsG andG’ areisomorphicif there exists a one-to-one correspondemnce
a', G < G, such thatab)’ = o'’ for all a,b € G.

REMARK 1.2. In the followinga, b, . .. are elements of a groug.

(@) If aa = a, thena = e (multiply by «’ and apply the axioms). Thusis the unique
element ofG with the property thate = e.

(b) If ba = e andac = e, then

b =be =blac) = (ba)c = ec = c.

Hence the element in (1.1c) is uniquely determined hy We call it theinverseof a, and
denote ita—! (or thenegativeof a, and denote it-a).

(c) Note that[(1.]la) implies that the product of any ordered triples,, as of elements
of G is unambiguously defined: whether we foaqu, first and then(a,az)as, or asas first
and thena; (asa3), the result is the same. In fact, (L.1a) implies that the product of any
orderedn-tuple a,, as,. .., a, of elements of7 is unambiguously defined. We prove this
by induction om:. In one multiplication, we might end up with

(a1~ ai)(air1 -+ an) 1)
as the final product, whereas in another we might end up with
(ar---a;)(ajer- - an). 2)

1Some authors use the following definitions: when (a) holds, but not necessarily (b) 06(e), is
semigroup when (a) and (b) hold, but not necessarily (€}, *) is monoid
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Note that the expression within each pair of parentheses is well defined because of the
induction hypotheses. Thus,iit= j, (1)) equals[(R). If # j, we may suppose< j. Then

(a1~ ai)(air1 - an) = (a1 a;) (@1 -+ a5)(aj1 - an))

(a1 aj)(ajr1 - an) = (a1~ @;)(@iv1 -+~ a5)) (@j41- - an)

and the expressions on the right are equal becau§e df (1.1a).

(d) The inverse ofiay - - a, is a;'a; ', ---a;', i.e., the inverse of a product is the
product of the inverses in the reverse order.

(e) Axiom (I.1c) implies that the cancellation laws hold in groups:

ab=ac=b=c, ba =ca=b=c

(multiply on left or right bya—1). Conversely, if7 is finitg, then the cancellation laws imply
Axiom (c): the mapr — ax: G — G is injective, and hence (by counting) bijective; in
particular,1 is in the image, and s@has a right inverse; similarly, it has a left inverse, and
the argument in (b) above shows that the two inverses must then be equal.

The order of a group is the number of elements in the group. A finite group whose
order is a power of a primgis called ap-group.

For an element of a groupG, define

aa- - a n >0 (n copies ofa)
a"=<¢ 1 n=>0
atat---a”! n<0 (|n|copiesofa')

The usual rules hold:
aman — CLern7 (am)n — amn. (3)

It follows from (3) that the set
{neZ|ad" =1}

is an ideal inZ. Thereforédthis set equal$m) for somem > 0. Whenm = 0, a is said
to haveinfinite order, anda™ # 1 unlessn = 0. Otherwiseg is said to havdinite order
m, andm is the smallest integer 0 such thatw™ = 1; in this caseq™ = 1 <= m|n;
moreovera ! = a™ 1.

ExampPLE 1.3. (a) Form > 1, letC,, = Z/mZ, and form = oo, let C,,, = Z (regarded as
groups under addition).

(b) Probably the most important groups are matrix groups. For exampl&, et a
commutative ring. IfA is ann x n matrix with coefficients inR whose determinant is a
uniffin R, then the cofactor formula for the inverse of a matrix (Dummit and Foote 1991,
11.4, Theorem 27) shows that ! also has coefficierfisn R. In more detail, ifA’ is the
transpose of the matrix of cofactors df thenA - A’ = det A - I, and so(det A)~' A’ is

2\We are using thaZ is a principal ideal domain.
3An element of a ring isinit if it has an inverse.
4Alternatively, the Cayley-Hamilton theorem provides us with an equation

A" 4 ap, A" 4 £ (det A) - T = 0.
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the inverse ofA. It follows that the seGL, (R) of such matrices is a group. For example
GL,(Z) is the group of alln x n matrices with integer coefficients and determinarit
When R is finite, for example, a finite field, theGL, (R) is a finite group. Note that
GL1(R) is just the group of units i — we denote itR*.

(c) If G andH are groups, then we can construct a new grGupH, called the(direct)
productof G and H. As a set, it is the cartesian product@fand H, and multiplication is
defined by:

(9, h)(g", ') = (9g', ).
(d) A group iscommutative(or abelian) if

ab="ba, alla,bed.

In a commutative group, the product of any finite (not necessarily ordereflofeiements
is defined.

RecaLF]the classification of finite abelian groups. Every finite abelian group is a product
of cyclic groups. Ifged(m,n) = 1, thenC,, x C,, contains an element of ordetn,
and soC,, x C, ~ C,,,, and isomorphisms of this type give the only ambiguities in the
decomposition of a group into a product of cyclic groups.

From this one finds that every finite abelian group is isomorphic to exactly one group
of the following form:

Coy X oo+ X Chp s nylng, ... ,n_1|n,.

The order of this group i8; - - - n,.

For example, each abelian group of ordéris isomorphic to exactly one afy, or
C3 x (U3 (note thatr,, must be a factor of0 divisible by all the prime factors ¢f0).

(e) Permutation groups. Let S be a set and lez be the seSym(S) of bijections
a: S — S. ThenG becomes a group with the composition layw = « o 3. For example,
the permutation group onn lettersis S, = Sym({1,...,n}), which has order!. The

123 45 67 . .
symbol(2 5743 1 6)denotesthepermu'[atlonsend|hg+ 2,2—5,3—17,

etc..

Subgroups

PROPOSITION1.4. Let G be a group and lef be a nonempty subset@fsuch that
(@) a,be S=abeS;
b)aeS=a'tes

Then the law of composition @i makesS into a group.

Therefore,
A (A" a1 A2 4 ) = F(det A) - T,

and
A- ((An—l +a, 1AM 2 4. ) - (F det A)_l) -1

5This was taught in an earlier course.
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PROOF. Condition (a) implies that the law of composition 6hdoes define a law of com-
positionS x S — S on S, which is automatically associative. By assumpttonontains
at least one element its inversea !, and the product = aa~!. Finally (b) shows that
inverses exist irb. O

A subsetS as in the proposition is calledsabgroupof G.

If S is finite, then condition (a) implies (b): lete S; then{a,d? ...} C S, and s
has finite order, say” = 1; nowa' = a"! € S. The exampléN, +) C (Z, +) shows
that (a) does not imply (b) whefi is infinite.

PROPOSITION1.5. An intersection of subgroups 6fis a subgroup o€-.

PROOF. It is nonempty because it contaibhsand conditions (a) and (b) df (1.4) are obvi-
ous. [

REMARK 1.6. Itis generally true that an intersection of subobjects of an algebraic object
is a subobject. For example, an intersection of subrings is a subring, an intersection of
submodules is a submodule, and so on.

PrROPOSITION1.7. For any subsetX of a groupG, there is a smallest subgroup 6f
containing X. It consists of all finite products (repetitions allowed) of element& @ind
their inverses.

PROOF. The intersectiort’ of all subgroups of7 containing.X is again a subgroup con-
taining X, and it is evidently the smallest such group. Cle&flgontains withX, all finite
products of elements of and their inverses. But the set of such products satisfies (a) and
(b) of (1.4) and hence is a subgroup containiiglt therefore equals’. O

We write (X') for the subgrougs in the proposition, and call it theubgroup generated
by X. For example{()) = {1}. If every element of7 has finite order, for example, ¥ is
finite, then the set of all finite products of elements¥ois already a group (recall that if
a™ =1, thena™! = a™!) and so equal§X).

We say thatX generates~ if G = (X), i.e., if every element ofs can be written as a
finite product of elements fronX' and their inverses. Note that the order of an element
of a group is the order of the subgroup it generates.

ExAMPLE 1.8. (a) A group iyclicif it is generated by one element, i.e.(Gf= (o) for
someo € G. If o has finite orden, then

G={l,0,0%..,0" '} ~C,, o'« i modn,

andG can be thought of as the group of rotational symmetries (about the centre) of a regular
polygon withn-sides. Ifo has infinite order, then

—i -1 i N i
G={...,07"...,0,1,0,....;0 ...} =Cy, 0o i

In future, we shall (loosely) us€,, to denote any cyclic group of order (not necessarily
Z/mZ or Z).
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(b) Dihedral group, DnE] This is the group of symmetries of a regular polygon with
sides. Number the verticas. . . , n in the counterclockwise direction. Letbe the rotation
through2z /n (soi — i +1 mod n), and letr be the rotation (=reflection) about the axis
of symmetry through and the centre of the polygon (86~ n + 2 — ¢ mod n). Then

o"=1;, =1, tort=0"' (orro=0""'7).

n—1 n—1
D,={l,0,...,0" ", 1,...,0" T}

The subgroup of:L,(C) generated by andb is
Q = {1,a,d* da®b,ab,a®b,a’b}.

The group can also be described as the suldset, +i, +j, -k} of the quaternion alge-
bra.

(d) Recall thatS,, is the permutation group ofl, 2, ...,n}. Thealternating group 4,,
is the subgroup of even permutations (§édelow). It has orde%’.

Groups of small order

Every group of ordek 16 is isomorphic to exactly one on the following list:
1: C. 2: Cs. 3: 03.

4: Cy, Cy x Cy (Viergruppe; Klein 4-group).

5: Cs.

6: Cs, S3 = D3 (Ssis the first noncommutative group).
7. C.

8: Cs, Cy x 04, Cy x Cy x Cg, Q, Dy.

9: Cg, 03 X Cg.

10: Cyy, Ds.

11: Cy;.

12: Clz, Cy x 067 Cy x 53, A4, C3 X Cy (S€€F3_TIB be|OW).

13: (3.

14 014, D7.

15: Cis.

16: (14 groups)

General rules: For each primethere is only one group (up to isomorphism), namely
C,, (seq 1.1 below), and only two groups of orgérnamely,C;, x C, andC,. (se€ 4.1]7).

6Some authors denote this grop,,.
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For the classification of the groups of ordigrseg 4.2]1; for ordes, seq 5.1j; for order2,
se€ 5.14; for orders), 14, and15, sed 5.1P.
Roughly speaking, the more high powers of primes dividéhe more groups of order
n you expect. In fact, iff (n) is the number of isomorphism classes of groups of order
then
f(n) < nl+e@em?

wheree(n) is the largest exponent of a prime dividingando(1) — 0 ase(n) — oo (see
Pyber, Ann. of Math., 137 (1993) 203-220).

By 2001, a complete irredundant list of groups of orde2000 had been found — up
to isomorphism, there are 49,910,529,484 (Besche, Hans Ulrich; Eick, Bettina; O’Brien,
E. A. The groups of order at most 2000. Electron. Res. Announc. Amer. Math. Soc. 7
(2001), 1-4 (electronic)).

Multiplication tables

A law of composition on a finite set can be described by its multiplication table:

a b ¢
a b ¢

a® ab ac

ba b* be

ca cb A

QO o =
-0 R ==

Note that, if the law of composition defines a group, then, because of the cancellation laws,
each row (and each column) is a permutation of the elements of the group.

This suggests an algorithm for finding all groups of a given finite orderamely, list
all possible multiplication tables and check the axioms. Except for very smadliis is
not practical! The table has® positions, and if we allow each position to hold any of
then elements, that gives a total of* possible tables. Note how few groups there are.
The 8% = 6277101735 386 680 763 835 789 423 207 666 416 102 355 444 464 034 512 896
possible multiplication tables for a set wighelements give only isomorphism classes of
groups.

Homomorphisms

DEFINITION 1.9. Ahomomorphismfrom a groupG to a second>’ is a mapa: G — G’
such thaiv(ab) = a(a)«(b) forall a,b € G.
Note that an isomorphism is simply a bijective homomorphism.

REMARK 1.10. Leta be a homomorphism. Then
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and so, by inductiong(a™) = a(a)™, m > 1. Moreovera(l) = a(1 x 1) = a(1)a(1),
and sox(1) = 1 (apply[1.2a). Also

aa ' =1=a"'a= ala)a(a™)=1=ala)ala),
and sox(a™!) = a(a)~!. From this it follows that
ala™) = ala)™ allm e Z.

We saw above that each row of the multiplication table of a group is a permutation of
the elements of the group. As Cayley pointed out, this allows one to realize the group as a
group of permutations.

THEOREM1.11 (CaYLEY). There is a canonical injective homomorphism
a: G — Sym(G).

PROOF. Fora € G, definear,: G — G to be the map: — ax (left multiplication bya).
Forx € G,

(ar, obp)(x) = ap(br(z)) = ap(bx) = abx = (ab)(z),
and so(ab), = ay, o by. As 1, = id, this implies that
apo(a ), =id= (aHyoar,

and soqa,, is a bijection, i.e.a;, € Sym(G). Hencea — ay is @ homomorphisnty —
Sym(G), and it is injective because of the cancellation law. ]

COROLLARY 1.12. A finite group of order can be identified with a subgroup 6.
PROOF. Number the elements of the group . . ., a,. O

Unfortunately, wherz has large orden, S,, is too large to be manageable. We shall
see later{(4.20) that can often be embedded in a permutation group of much smaller order
thann!.

Cosets

Let H be a subgroup ofr. A left cosetof H in G is a set of the form
aH = {ah |h € H},

some fixeth € G; aright cosetis a set of the form
Ha={ha|h € H},

some fixeth € G.

ExAMPLE 1.13. LetG = R?, regarded as a group under addition, andidie a subspace
of dimensionl (line through the origin). Then the cosets (left or right)féfare the lines
parallel toH.
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PROPOSITION1.14. (a) If C'is a left coset of, anda € C, thenC = aH.
(b) Two left cosets are either disjoint or equal.
(c)aH = bH if and only ifa~'b € H.
(d) Any two left cosets have the same number of elements (possibly infinite).

PROOF. (a) Becausé& is a left coset(” = bH someb € (G, and because € C, a = bh
for someh € H. Nowb = ah™! € aH, and for any other elementof C, ¢ = bW/ =
ah™'h' € aH. Thus,C C aH. Conversely, it- € aH, thenc = ah/ = bhh' € bH.

(b) If C andC’ are not disjoint, then there is an elemerg C' N C’, andC = o H and
C'"=aH.

(c) We haveaH = bH <= b € aH <= b = ah, for someh € H, i.e,,
— a'beH.

(d) The map(ba™!)., : ah — bh is a bijectionaH — bH. O

In particular, the left cosets df in G partition, and the conditiond andb lie in the
same left coset” is an equivalence relation(en

Theindex (G : H) of H in G is defined to be the number of left cosets/dfin G. In
particular,(G : 1) is the order of.

Each left coset off has(H : 1) elements and- is a disjoint union of the left cosets.
Whend is finite, we can conclude:

THEOREM1.15 (LAGRANGE). If GG is finite, then
(G:1)=(G:H)H:1).
In particular, the order ofH divides the order of-.

COROLLARY 1.16. The order of every element of a finite group divides the order of the
group.
PROOF. Apply Lagrange’s theorem t&f = (g), recalling that H : 1) = ordexg). O

EXAMPLE 1.17. If G has ordep, a prime, then every element 6fhas orden or p. But
only e has orderl, and soG is generated by any elemept£ e. In particular,G is cyclic,
G =~ C,. Hence, up to isomorphism, there is only one group of otde®0, 000, 007; in
fact there are only two groups of order000, 000, 014, 000, 000, 049.

REMARK 1.18. (a) There is a one-to-one correspondence between the set of left cosets and
the set of right cosets, viz,H < Ha'. Hence(G : H) is also the number of right cosets
of Hin G. But, in general, a left coset wiliot be a right coset (s¢e 1]22 below).

(b) Lagrange’s theorem has a partial converse: if a pprdezidesm = (G : 1), then
G has an element of order if p” dividesm, thenG has a subgroup of ordef (Sylow’'s
theorenj 5.2). However, note th@g x Cs has order, but has no element of ordér and
Ay has orden 2, but it has no subgroup of ordér(see Exercise 31).

More generally, we have the following result.

PROPOSITION1.19. Let G be a finite group. ItZ © H O K with H and K subgroups of
G, then
(G:K)=(G:H)(H:K).
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PrROOF. Write G = |J ¢;H (disjoint union), andd = J ;K (disjoint union). On mul-
tiplying the second equality by;, we find thatg; H = Uj g;h; K (disjoint union), and so
G = Jg:h; K (disjoint union). O

Normal subgroups

When S andT are two subsets of a groudp, we let
ST ={st|sesS, teT}.

A subgroupN of G is normal, written N <1 G, if gNg~' = N forallg € G. An
intersection of normal subgroups of a group is normal[(ci. 1.6).

REMARK 1.20. To showV normal, it suffices to check thatVg—! c N for all g, because
gNg* C N = g 'gNg'g C g~ Ng (multiply left and right withg~! andg);

henceN c ¢g~!Ngforall g, and, on rewriting this witly ! for g, we find thatV c gNg~!
for all g.

The next example shows however that there can exisf and ag such thayNg—! C
N,gNg—' # N (famous exercise in Herstein, Topics in Algebra, 2nd Edition, Wiley, 1975,
2.6, Exercise 8).

EXAMPLE 1.21. LetG = GLy(Q), and letd = {({7) | n € Z}. ThenH is a subgroup
of G; in fact it is isomorphic t&Z. Letg = (§59). Then

I n\ .y (5 5n 55V 0) (1 5n
Vo 1)9 “\lo 1 o 1)~ \o 1)
HencegHg ' C H,butgHg ! +# H.

PROPOSITION1.22. A subgroupV of GG is normal if and only if each left coset of in G
is also a right coset, in which casg)N = Ng forall g € G.

PROOF. =-: Multiply the equalitygNg—! = N on the right byg.
<: If gN is a right coset, then it must be the right co8gj — see [(1.I4a). Hence
gN = Ng, and sogNg—! = N. This holds for allg. O

REMARK 1.23. In other words, in order faV to be normal, we must have that for all
g € G andn € N, there exists an’ € N such thayn = n’g (equivalently, for ally € G
andn € N, there exists an’ such thatng = gn’.) Thus, an element af can be moved
past an element oV at the cost of replacing the element/éfby a different element aWv.

ExAmMPLE 1.24. (a) Every subgroup of index two is normal. Indeedglet G, g ¢ H.
ThenG = H U gH (disjoint union). Hencg H is the complement of/ in G. The same
argument shows thdf g is the complement off in G. HencegH = Hyg.

(b) Consider the dihedral group,, = {1,0,...,06" ', 7,...,0" '7}. ThenC, =
{1,0,...,0"'} has index2, and hence is normal. Fer > 3 the subgroud1, 7} is not
normal becausero™! = 70" % ¢ {1,7}.

(c) Every subgroup of a commutative group is normal (obviously), but the converse
is false: the quaternion group is not commutative, but every subgroup is normal (see
Exercise 1).
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A group G is said to besimpleif it has no normal subgroups other théhand {1}.
Such a group can have still lots of nonnormal subgroups — in fact, the Sylow theorems
(§5) imply that every group has nontrivial subgroups unless it is cyclic of prime order.

PROPOSITION1.25. If H and N are subgroups ofr and V is normal, then
HN L {mn|heH neN}
is a subgroup of5. If H is also normal, therf{ V is a normal subgroup of-.
PROOF. The setH N is nonempty, and
(hn)(h'n') 22 hi'n'n € HN,
and so it is closed under multiplication. Since
(hn) " =n'n B2 1y € HN
it is also closed under the formation of inverses. If batland N are normal, then
gHNg™' = gHg™' -gNg~" = HN

forall g € G. O

Quotients
Thekernel of a homomorphisma: G — G’ is
Ker(a) = {g € G| a(g) = 1}.
If «is injective, theriKer(a) = {1}. Conversely, ifker(a) = 1 thena is injective, because
a(g)=alg)=alg7lg)=1=g¢"d=1=g=4.
PROPOSITION1.26. The kernel of a homomorphism is a normal subgroup.
PROOF. It is obviously a subgroup, anddf € Ker(«), so thatu(a) = 1, andg € G, then
a(gag™") = a(g)a(a)alg)™ = algla(g)™ = L.
Hencegag—' € Ker a. [

PROPOSITION1.27. Every normal subgroup occurs as the kernel of a homomorphism.
More precisely, ifV is a normal subgroup aof7, then there is a natural group structure on
the set of cosets @f in G (this is if and only if).
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PROOF. Write the cosets as left cosets, and defin® ) (bN) = (ab) N. We have to check
(a) that this is well-defined, and (b) that it gives a group structure on the set of cosets. It
will then be obvious that the map— ¢V is a homomorphism with kerné¥.
Check (a). SupposeN = o' N andbN = V' N; we have to show thatoN = a'b' N.
But we are given that = o'n andb = b'n’, somen,n’ € N. Hence

ab = andn’ B J¥n"n € o'V'N.

Thereforeab N andd’t’ N have a common element, and so must be equal.
Checking (b) is straightforward: the set is nonempty; the associative law holds; the
cosetN is an identity element; 1V is an inverse ofi V. O

WhenN is a normal subgroup, we writé/N for the set of left £ right) cosets ofV in
G, regarded as a group. Itis calledmhmotientof(} by N. Themapm — aN: G — G/N
is a surjective homomorphism with kern®l. It has the following universal property: for
any homomorphisn: G — G’ of groups such that(N) = 1, there exists a unique
homomorphisnG/N — G’ such that the following diagram commutes:

G G/N
N

G
ExAMPLE 1.28. (a) Consider the subgrou of Z. The quotient groufd./mZ is a cyclic
group of ordem.
(b) Let L be a line through the origin iR?. ThenR?/L is isomorphic taR (because it
is a one-dimensional vector space oRgr
(c) The quotientD,, /(o) ~ {1, 7} (cyclic group of ordee).

Exercises 1-4

Exercises marked with an asterisk were required to be handed in.

1*. Show that the quaternion group has only one element of @idend that it commutes
with all elements of). Deduce that) is not isomorphic taD,, and that every subgroup of
Q is normal.

2*. Consider the elements

(0 -1y ,_ (0 1
=1 0 -1 1
in GLy(Z). Show thatz* = 1 andd® = 1, but thateb has infinite order, and hence that the
group(a, b) is infinite.

3*. Show that every finite group of even order contains an element of drder

4*, Let N be a normal subgroup @f of indexn. Show that ifg € G, theng™ € N. Give
an example to show that this may be false wiérs not normal.

’Some authors say “factor” instead of “quotient”, but this can be confused with “direct factor”.
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2 Free Groups and Presentations

It is frequently useful to describe a group by giving a set of generators for the group and
a set of relations for the generators from which every other relation in the group can be
deduced. For examplé),, can be described as the group with generatorsand relations

o"=1, 1*=1, 7To10=1.

In this section, we make precise what this means. First we need to define the free group on
a setX of generators — this is a group generatedXyand with no relations except for
those implied by the group axioms. Because inverses cause problems, we first do this for
semigroups.

Free semigroups

Recall that (for us) a semigroup is a getwith an associative law of composition having
an identity element. A homomorphismy: S — S’ of semigroups is a map such that
a(ab) = a(a)a(d) forall a,b € S anda(1l) = 1. Thena preserves all finite products.

LetX = {a,b,c,...} bea(possibly infinite) set of symbols.word is afinite sequence
of symbols in which repetition is allowed. For example,

aa, aabac, b
are distinct words. Two words can be multiplied by juxtaposition, for example,
aaaa * aabac = aaaaaabac.

This defines on the sét’ of all words an associative law of composition. The empty
sequence is allowed, and we denote itlby(In the unfortunate case that the symibas
already an element of, we denote it by a different symbol.) Thérserves as an identity
element. WriteS X for the set of words together with this law of composition. Tkex

is a semigroup, called tHeee semigroupn X.

When we identify an elementof X with the worda, X becomes a subset 6fX and
generates it (i.e., there is no proper subsemigrougXfcontainingX). Moreover, the
mapX — SX has the following universal property: for any map (of sets)X — S from
X to a semigrou, there exists a unigue homomorphishik' — S making the following
diagram commute:

X — 5X
N
S.

In fact, the unique extension aftakes the values:

a(l) =1g, a(dba---) = ald)a(b)a(a)---
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Free groups

We want to construct a groupX containingX and having the same universal property
asSX with “semigroup” replaced by “group”. Defin&’ to be the set consisting of the
symbols inX and also one additional symbol, denoted, for eache € X; thus

X' ={a,a b0t ..}

Let W’ be the set of words using symbols fraif. This becomes a semigroup under
juxtaposition, but it is not a group because we can’t cancel out the obvious terms in words
of the following form:

..xl'_l... Or...x_laj...

A word is said to baeducedif it contains no pairs of the formz~! or z~'z. Starting

with a wordw, we can perform a finite sequence of cancellations to arrive at a reduced
word (possibly empty), which will be called thheduced formof w. There may be many
different ways of performing the cancellations, for example,

cabb"ta e tea — caa e rea — e lea — ca

cabb™'a e tea — cabbta"ta — cabb”! — ca.

We have underlined the pair we are cancelling. Note that the middlés cancelled with
differenta’s, and that different terms survive in the two cases. Nevertheless we ended up
with the same answer, and the next result says that this always happens.

PROPOSITION2.1. There is only one reduced form of a word.

PROOF. We use induction on the length of the watd If w is reduced, there is nothing
to prove. Otherwise a pair of the formx~! or z='z occurs — assume the first, since the
argument is the same in both cases.

Observe that any two reduced formswfobtained by a sequence of cancellations in
whichzz~! is cancelled first are equal, because the induction hypothesis can be applied to
the (shorter) word obtained by cancelling~!.

Next observe that any two reduced formswbbtained by a sequence of cancellations
in which zz~! is cancelled at some point are equal, because the result of such a sequence
of cancellations will not be affectedifr ! is cancelled first.

Finally, consider a reduced form, obtained by a sequence in which no cancellation
cancelszz~! directly. Sincerz~—! does not remain im,, at least one of or z—! must
be cancelled at some point. If the pair itself is not cancelled, then the first cancellation
involving the pair must look like

.../@—lﬁx—l... or -z ! £

where our original pair is underlined. But the word obtained after this cancellation is the
same as if our original pair were cancelled, and so we may cancel the original pair instead.
Thus we are back in the case just proved. O

We say two wordsv, w’ areequivalent denotedov ~ w’, if they have the same reduced
form. This is an equivalence relation (obviously).
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PROPOSITION2.2. Products of equivalent words are equivalent, i.e.,
w~w, v~V = wo~w.

PrROOF. Let wy andv, be the reduced forms af and ofv. To obtain the reduced form
of wv, we can first cancel as much as possibleviandv separately, to obtaingv, and
then continue cancelling. Thus the reduced formvofis the reduced form ofvgvy. A
similar statement holds far'v’, but (by assumption) the reduced formswoaindv equal
the reduced forms af’ andv’, and so we obtain the same result in the two cases. []

Let X be the set of equivalence classes of words. The proposition shows that the law
of composition o/’ defines a law of composition afi.X', which obviously makes it into
a semigroup. It also has inverses, because

ab---gh - h*lg*1 b taTt A

ThusF X is a group, called th&cee groupon X. To summarize: the elements bfX are
represented by words iX’; two words represent the same elemenf0of if and only if
they have the same reduced forms; multiplication is defined by juxtaposition; the empty
word represents; inverses are obtained in the obvious way. Alternatively, each element
of F X is represented by a unique reduced word; multiplication is defined by juxtaposition
and passage to the reduced form.

When we identifya € X with the equivalence class of the (reduced) wardhen X
becomes identified with a subset 8X — clearly it generate$’ X. The next proposition
is a precise statement of the fact that there are no relations among the elemgntden
regarded as elements BfX except those imposed by the group axioms.

PrROPOSITION2.3. For any map (of setsX — G from X to a groupG, there exists a
unique homomorphistA X — G making the following diagram commute:

X —>FX

N

PROOF. Consider a map: X — G. We extend it to a map of sef§’ — G by setting
a(a™) = a(a)~!. Becaus& is, in particular, a semigroup, extends to a homomorphism
of semigroupsSX’ — G. This map will send equivalent words to the same element of
G, and so will factor throughF X = SX’/~. The resulting mag’X — G is a group
homomorphism. Itis unique because we know it on a set of generatafs¥or ]

REMARK 2.4. The universal property of the map X — F X, x — x, characterizes it:
if /: X — F’is asecond map with the same universal property, then there is a unique
isomorphismy: FX — F’ such thatv(wz) = /z forall z € X.

COROLLARY 2.5. Every group is a quotient of a free group.

PROOF. Choose a seX of generators forr (e.g., X = G), and letF’ be the free group
generated byX. According to [2.B), the inclusioX — G extends to a homomorphism
F — @, and the image, being a subgroup containkignust equal. O]
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The free group on the sé&f = {a} is simply the infinite cyclic groug’., generated by
a, but the free group on a set consisting of two elements is already very complicated.
| now discuss, without proof, some important results on free groups.

THEOREM 2.6 (NIELSEN-SCHREIER). [} Subgroups of free groups are free.

The best proof uses topology, and in particular covering spaces—see Serre, Trees,
Springer, 1980, or Rotman 1995, Theorem 11.44.

Two free groupsF' X and F'Y are isomorphic if and only ifX andY have the same
number of elemer{ﬂs Thus we can define thenk of a free groupG to be the number
of elements in (i.e., cardinality of) a free generating set, i.e., subset G such that the
homomorphisn¥' X — G given by [2.8) is an isomorphism. Lét be a finitely generated
subgroup of a free group. Then there is an algorithm for constructing from any finite set
of generators fof{ a free finite set of generators. A has rank: and(F' : H) =i < oo,
thenH is free of rank

ni—1i+ 1.

In particular, H may have rank greater than that Bf For proofs, see Rotman 1995,
Chapter 11, or Hall, M., The Theory of Groups, MacMillan, 1959, Chapter 7.

Generators and relations

As we noted ir1, an intersection of normal subgroups is again a normal subgroup. There-
fore, just as for subgroups, we can define tioemal subgroup generated by a sétin
a groupG to be the intersection of the normal subgroups contaiindts description in
terms of S is a little complicated. Call a subs§tof a groupG normal if gSg=* c S for
all g € G. Then it is easy to show:

(a) if S'is normal, then the subgroyp) generate@ by it is normal,

(b) forS C G, Ugeg gSg~!is normal, and it is the smallest normal set containfiag

From these observations, it follows that:

LEMMA 2.7. The normal subgroup generated BYC G is (U, 9597 ")-

Consider a se and a setk of words made up of symbols iX’. Each element of
R represents an element of the free grduy, and the quotientz of X by the normal
subgroup generated by these elements is said to Keaggeneratorsand R asrelations
One also says thdtX, R) is a presentationfor G, G = (X|R), and thatR is a set of
defining relationsfor G.

ExAmMPLE 2.8. (a) The dihedral group,, has generators, 7 and defining relations
o, 7% ToTo.

(Se€ 2.1D below for a proof.)

8Nielsen (1921) proved this for finitely generated subgroups, and in fact gave an algorithm for deciding
whether a word lies in the subgroup; Schreier (1927) proved the general case.

9By which | mean that there is a bijection from one to the other.

0The map “conjugation by”, = — gzg~!, is @ homomorphisn@ — G. If z € G can be written
x = ay - - a,, With eacha; or its inverse inS, then so also cagrg ! = (ga1g7 1) -+ (gamg™1).



2 FREE GROUPS AND PRESENTATIONS 19

(b) Thegeneralized quaternion grou),,, n > 3, has generators, b and relatior@
a? ' =1,a®" =%, bab™* = a~L. Forn = 3 this is the groug) of (L.gc). In general, it
has ordee” (for more on it, see Exercise 8).

(c) Two elements andb in a group commute if and only if thedtommutator|a, b] =g
aba=*b~'is 1. Thefree abelian groupon generators,, . . . , a,, has generatoxs, , as, . . ., a,
and relations

[aiy aj]7 { 7é ]

For the remaining examples, see Massey, W., Algebraic Topology: An Introduction,
Harbrace, 1967, which contains a good account of the interplay between group theory and
topology. For example, for many types of topological spaces, there is an algorithm for
obtaining a presentation for the fundamental group.

(d) The fundamental group of the open disk with one point removed is the free group
ono whereos is any loop around the point (ibid. 11 5.1).

(e) The fundamental group of the sphere withoints removed has generatets..., o,

(0, is a loop around thé" point) and a single relation

op---0, = 1.

() The fundamental group of a compact Riemann surface of gghas2g generators
uy,v1, ..., Uy, vy @nd a single relation

uyvguy oyt -ugvguglvg’l =1
(ibid. IV Exercise 5.7).

PROPOSITION2.9. Let G be the group defined by the presentatioh R). For any group
H and map (of setsX — H sending each element &fto 1 (in an obvious sense), there
exists a unique homomorphiseh— H making the following diagram commute:

G

N\

H.

X

PROOF. Let a be a mapX — H. From the universal property of free groups {2.3), we
know thata extends to a homomorphisilX — H, which we again denote. Let . R be

the image ofR in F X. By assumptionR C Ker(«), and therefore the normal subgroyp
generated byR is contained irker(«). Hence (see[p14) factors through"X/N = G.

This proves the existence, and the uniqueness follows from the fact that we know the map
on a set of generators fof. ]

EXAMPLE 2.10. LetG = (a,b|a", b? baba). We prove thatG is isomorphic toD,,. Be-
cause the elementst € D,, satisfy these relations, the map

{a,b} = D,,, a—o, br—rT

Ugtrictly speaking, | should say the relatiord ', a2" b2, bab~La.
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extends uniquely to a homomorphigi— D,,. This homomorphism is surjective because
o andr generateD,. The relationsa” = 1, b* = 1, ba = o™ 'b imply that each
element ofG is represented by one of the following elemeitts, ., a" 1, b, ab, ..., a" b,

and so(G : 1) < 2n = (D, : 1). Therefore the homomorphism is bijective (and these
symbols represent distinct elementg#Ht

Finitely presented groups

A group is said to béinitely presentedf it admits a presentatioflX, R) with both X and
R finite.

EXAMPLE 2.11. Consider a finite grou@. Let X = G, and letR be the set of words
{abc™" | ab = cin G}.

| claim that(X, R) is a presentation afr, and saoG is finitely presented. Let’ = (X|R).
The mapFX — G, a — a, sends each element &fto 1, and therefore defines a ho-
momorphismG’ — G, which is obviously surjective. But clearly every elemenifis
represented by an element®f and so the homomorphism is also injective.

Although it is easy to define a group by a finite presentation, calculating the properties
of the group can be very difficult — note that we are defining the group, which may be
quite small, as the quotient of a huge free group by a huge subgroup. | list some negative
results.

The word problem

Let G be the group defined by a finite presentatiéh R). The word problem fot7 asks
whether there is an algorithm (decision procedure) for deciding whether a word on
represents in G. Unfortunately, the answer is negative: Novikov and Boone showed that
there exist finitely presented groupsfor which there is no such algorithm. Of course,
there do exist other groups for which there is an algorithm.

The same ideas lead to the following result: there does not exist an algorithm that
will determine for an arbitrary finite presentation whether or not the corresponding group
is trivial, finite, abelian, solvable, nilpotent, simple, torsion, torsion-free, free, or has a
solvable word problem.

See Rotman 1995, Chapter 12, for proofs of these statements.

The Burnside problem

A group is said to havexponentm if ¢ = 1forall g € G. It is easy to write down
examples of infinite groups generated by a finite number of elements of finite order (see
Exercise 2), but does there exist an infinite finitely-generated group with a finite exponent?
(Burnside problem). In 1970, Adjan, Novikov, and Britton showed the answer is yes: there
do exist infinite finitely-generated groups of finite exponent.
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Todd-Coxeter algorithm

There are some quite innocuous looking finite presentations that are known to define quite
small groups, but for which this is very difficult to prove. The standard approach to these
guestions is to use the Todd-Coxeter algorithm (geleelow).

In the remainder of this course, including the exercises, we’ll develop various methods
for recognizing groups from their presentations.

Maple
What follows is an annotated transcript of a Maple session:

maple [This starts Maple on a Sun, PC, ...]

with(group); [This loads the group package, and lists
some of the available commands.]

G:=grelgroup({a,b},{[a,a,a,a],[b,b],[b,a,b,a]});
[This defines G to be the group with generators a,b and
relations aaaa, bb, and baba; use 1/a for the inverse of a.]

grouporder(G);
[This attempts to find the order of the group G.]

H:=subgrel({x=[a,a],y=[b]},G);
[This defines H to be the subgroup of G with
generators x=aa and y=b]

pres(H); [This computes a presentation of H]

quit [This exits Maple.]
To get help on a command, type ?command

Exercises 5-12

5*. Prove that the group with generaters ... . , a,, and relationga;, a;] = 1,4 # j, is the
freeabeliangroup ona4, .. ., a,. [Hint: Use universal properties.]

6. Let a andb be elements of an arbitrary free grofip Prove:
(@) Ifa™ =0b"withn > 1, thena = b.
(b) If a™b™ = b™a™ with mn # 0, thenab = ba.
(c) If the equation:™ = a has a solutior: for everyn, thena = 1.

7*. Let F,, denote the free group ongenerators. Prove:
(a) Ifn < m, thenF, is isomorphic to both a subgroup and a quotient group,of
(b) Prove thatF; x F; is not a free group.
(c) Prove that the cent8(F,,) = 1 providedn > 1.
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8. Prove that), (seq 2.Bb) has a unique subgroup of orzlerhich is Z(@Q,,). Prove that
Q./Z(Q,) is isomorphic toDyn-1.

9. (a) LetG = (a, bla?,b%, (ab)?). Prove that5 is isomorphic to the dihedral group,.
(b) Prove thaty = (a, b|a?, abab) is an infinite group. (This is usually known as the infinite
dihedral group.)

10.LetG = {(a, b, c|a®, b3, ¢, acac™, aba='be™'b~1). Prove thats is the trivial group{1}.
[Hint: Expand(aba=")3 = (beb™1)3.]

11*. Let F' be the free group on the sgt, y} and letG = C,, with generatorn # 1. Let«
be the homomorphism' — G such thatv(z) = a = a(y). Find a minimal generating set
for the kernel ofx. Is the kernel a free group?

12.Let G = (s, t|t"'s*t = s°). Prove that the element
g = sl s lest st
is in the kernel of every map froi to a finite group.

Coxeter came to Cambridge and gave a lecture [in which he stated a] problem for which
he gave proofs for selected examples, and he asked for a unified proof. | left the lecture
room thinking. As | was walking through Cambridge, suddenly the idea hit me, but it hit
me while | was in the middle of the road. When the idea hit me | stopped and a large truck
ran into me.... So | pretended that Coxeter had calculated the difficulty of this problem so
precisely that he knew that | would get the solution just in the middle of the road.... Ever
since, I've called that theorem “the murder weapon”. One consequence of it is that in a group
if a2 =% = ¢® = (abc)™!, thenc®10 = 1.

John Conway, Mathematical Intelligencer 23 (2001), no. 2, pp8-9.
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3 Isomorphism Theorems. Extensions.

Theorems concerning homomorphisms

The next three theorems (or special cases of them) are often callédstheecond, and
third isomorphism theoremsespectively.

Factorization of homomorphisms

Recall that the image ofamap S — T isa(S) = {a(s) | s € S}.

THEOREM 3.1 (FUNDAMENTAL THEOREM OF GROUP HOMOMORPHISME For any ho-
momorphisn: G — G’ of groups, the kerneN of « is a normal subgroup of7, the
image! of a is a subgroup ofy’, and« factors in a natural way into the composite of a
surjection, an isomorphism, and an injection:

G—> ¢
\Lonto Tinj‘
G/N N

PROOF. We have already se€n (1]26) that the kernel is a normal subgraipbb = «(a)
andd’ = a(d’), thenbt = a(aa’) andb™! = a(a™'), and sol =4 «(QG) is a subgroup of
G'. Forn € N, a(gn) = a(g)a(n) = a(g), and sox is constant on each left cosgV of
N in G. It therefore defines a map

a:G/N — 1, a(gN)=a(g).
Thena is a homomorphism because
a((gN) - (¢'N)) =algg'N) = algg’) = alg)elyg’),

and it is certainly surjective. ifi(¢gN) = 1, theng € Ker(o) = N, and soa has trivial
kernel. This implies that it is injective (p. [L3). N

The isomorphism theorem

THEOREM 3.2 (ISOMORPHISMTHEOREM). Let H be a subgroup ofr and N a normal
subgroup of7. ThenH N is a subgroup of7, H N N is a normal subgroup off, and the
map

h(HNN)+— hN: H/HNN — HN/N

is an isomorphism.
PrROOF. We have already seejn (1]25) tifatV is a subgroup. Consider the map
H — G/N, hw~ hN.

This is a homomorphism, and its kernelisN N, which is therefore normal ik/. Ac-
cording to Theorerp 3|1, it induces an isomorphienH N N — I wherel is its image.
But ] is the set of cosets of the formV with h € H,i.e.,] = HN/N. O
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The correspondence theorem

The next theorem shows thatGf is a quotient group ofy, then the lattice of subgroups in
G captures the structure of the lattice of subgroup& dfing over the kernel off — G.

THEOREM 3.3 (CORRESPONDENCETHEOREM). Leta: G — G be a surjective homo-
morphism, and letv = Ker(«). Then there is a one-to-one correspondence

{subgroups of> containing/N } & {subgroups of7}

under which a subgroug of G containing N corresponds taf = «(H) and a subgroup
H of G corresponds td = o~'(H). Moreover, ifH < H and H' < H , then
(@) HC H < HC H',inwhichcasdH : H) = (H': H);
(b) H is normal inG if and only if H is normal inG, in which caseq induces an
isomorphism
G/H = G/H.

PROOF. For any subgroug of G, o~'(H) is a subgroup ofy containingN, and for any

subgroupH of G, a(H) is a subgroup of;. One verifies easily that 'a(H) = H if and
only if H > N, and thatea™'(H) = H. Therefore, the two operations give the required
bijection. The remaining statements are easily verified. O

COROLLARY 3.4. Let N be a normal subgroup @¥; then there is a one-to-one correspon-
dence between the set of subgroups/afontaining/NV and the set of subgroups 6f/ N,

H < H/N. MoreoverH is normal inG if and only if H/N is normal inG/N, in which
case the homomorphisgn— gN : G — G/N induces an isomorphism

G/H = (G/N)/(H/N).

PROOF. Special case of the theorem in whighis taken to bgy — gN: G — G/N. [

Direct products
The next two propositions give criteria for a group to be a direct product of two subgroups.
PROPOSITION3.5. Consider subgroup#/; and H, of a groupG. The map

(hy, ho) — hihy: Hy X Hy — G

is an isomorphism of groups if and only if
(@) G = HiH,,
(b) H, N Hy = {1}, and
(c) every element aff; commutes with every element/f.

PROOF. The conditions are obviously necessary(ife H, N H,, then(g,g7 ') — 1,
and so(g,g') = (1,1)). Conversely, (c) implies that the mdp,, hy) — hihy is a
homomorphism, and (b) implies that it is injective:

h1h2:1:>h1:h2*1€H1ﬁH2:{1}.

Finally, (a) implies that it is surjective. O
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PrROPOSITION3.6. Consider subgroup&/; and H, of a groupG. The map
(hl,hg) — hlhgi H1 X H2 — G

is an isomorphism of groups if and only if
(@ HiH; =G,
(b) Hy N Hy = {1}, and
(c) H, and H, are both normal in.

PROOF. Again, the conditions are obviously necessary. In order to show that they are
sufficient, we check that they imply the conditions of the previous proposition. For this we
only have to show that each eleméntof H; commutes with each elemel of H,. But
the commutatofh,, ho] = hihohi hy' = (hihohi!') - hytisin H, becauséd, is normal,
and it's in H, becausé?; is normal, and so (b) implies that itis Henceh,hy = hohy. [

PROPOSITION3.7. Consider subgroup/,, H,, . .., Hy of a groupG. The map
(hl,hz,...,hk) thhg"'hkiHl X H2 X+ X Hk—>G

is an isomorphism of groups if (and only if)
(@) G = HHy--- Hy,
(b) foreachy, H; N (Hy---H;j—1H;41--- Hy) = {1}, and
(c) each ofH,, H,, ..., Hy is normal inG,

PrROOF. Fork = 2, this is becomes the preceding proposition. We proceed by induction
on k. The conditions (a,b,c) hold for the subgrougs, ..., H,_; of H,--- H,_,, and so
we may assume that

(hl,hQ,...,hkfl) I—>h1h2"‘hk71:H1 XH2 X XHk,1—>H1H2“‘Hk,1

is an isomorphism. An induction argument usipg (1.25) showsAhat - H;,_; is normal
in G, and so the paif{; - - - H,_;, Hy, satisfies the hypotheses pf (3.6). Hence

(h,hk) — hhk : (Hl"'ch—l) X Hk — G

is an isomorphism. These isomorphisms can be combined to give the required isomor-
phism:

(h1,eshg )= (ha by 1,hy) (hyhi)—hhy
AN

Hl"'Hk—l XHk G. ]
REMARK 3.8. When
(hl,hg,...,hk)thhg"'hki H1 XHQX XHk—>G

is an isomorphism we say thétis thedirect productof its subgroup<;. In more down-
to-earth terms, this means: each elemgot G can be written uniquely in the form =
hihy -~ hy, h; € H;; if g = hihg--- hy andg’ = R\ hY - -- b, then

99" = (hih)(hohy) - - - (hihy,).
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Automorphisms of groups

Let G be a group. An isomorphis®&@ — G is called anautomorphismof GG. The set
Aut(G) of such automorphisms becomes a group under composition: the composite of
two automorphisms is again an automorphism; composition of maps is always associative;
the identity mag — ¢ is an identity element; an automorphism is a bijection, and therefore
has an inverse, which is again an automorphism.

Forg € G, the mapi, “conjugation byg”,

r—grg G —G

is an automorphism: it is a homomorphism because

-1

g(zy)g™" = (gzg " )(gyg™"), e, ig(zy) =iy(x)ig(y),

and it is bijective becausg-: is an inverse. An automorphism of this form is called an
inner automorphism and the remaining automorphisms are said touter.
Note that

(gh)z(gh)™! = g(hah™") g™, i.e. ign(x) = (ig 0 in)(x),

and so the map — i,: G — Aut(G) is a homomorphism. Its image is written (i#).
Its kernel is thecentreof G,

Z(G)={9€G|gr=zgallzxeG}
and so we obtain fronj (3.1) an isomorphism
G/Z(G) — Inn(G).
In fact, Inn(G) is a normal subgroup otut(G): for g € G anda € Aut(G),

(aoigoa)(z)=alg-a™ (z) g7') = alg) 2 alg)™ = iag)().

A group( is said to becompleteif the mapg — i,: G — Aut(G) is an isomorphism.
Note that this is equivalent to the condition:
(@) the centreZ (G) of G is trivial, and
(b) every automorphism a is inner.

EXAMPLE 3.9. (a) Fom # 2,6, S, is complete. The group, is commutative and hence
fails (a); Aut(Ss)/Inn(Ss) ~ C5, and hence; fails (b). See Rotman 1995, Theorems 7.5,
7.10.

(b) LetG = . The automorphisms aff as an abelian group are just the automor-
phisms ofG as a vector space ovey,; thusAut(G) = GL,(F,). Becausé&s is commuta-
tive, all nontrivial automorphisms @ are outer.

(c) As a particular case of (b), we see that

Aut(C’z X 02) = GLQ(FQ)
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But GL, (Fy) ~ S5 (see Exercise 16), and so the nonisomorphic graups C, and.S;
have isomorphic automorphism groups.

(d) Let G be a cyclic group of order, sayG = (g). An automorphismy of G must
sendg to another generator @¥. Letm be an integet> 1. The smallest multiple of
divisible byn ism - edlmy” Thereforeg™ has ordergcd(#n), and so the generators Gf
are the elementg” with gcd(m,n) = 1. Thusa(g) = g™ for somem relatively prime to
n, and in fact the map — m defines an isomorphism

Aut(Cy) — (Z/nZ)~
where
(Z/nZ)* = {unitsin the ringZ/nZ} = {m + nZ | gcd(m,n) = 1}.

This isomorphism is independent of the choice of a genetdimrG; in fact, if a(g) = g™,
then for any other element = ¢ of G,

a(g) = alg) = alg) = g™ = (¢)" = (&)™
(e) Since the centre of the quaternion graijs (a*), we have that

|nn(Q) = Q/(a2> ~ (Cy x Cs.

In fact, Aut(Q) ~ S,. See Exercise 17.
(f) If G is a simple noncommutative group, thémt(G) is complete. See Rotman
1995, Theorem 7.14.

REMARK 3.10. It will be useful to have a description Gf/nZ)* = Aut(C,). If n =
pi' - - - pie is the factorization of. into powers of distinct primes, then the Chinese Remain-
der Theorem (Dummit and Foote 1991, 7.6, Theorem 17) gives us an isomorphism

ZInZ =7)py*Z X --- X Z/p2Z, m modn— (m modpi',...,m mod p),
which induces an isomorphism
(Z/nZ)* =~ (L[py L) X -+ X (L[pSL)”.

Hence we need only consider the case p”, p prime.

Suppose first thatis odd. The sef0, 1,...,p"—1} is a complete set of representatives
forZ/p"Z, and}lg of these elements are divisible pyHence(Z /p"Z)* has ordep” — % =
p"~'(p—1). Because — 1 andp" are relatively prime, we know frorm (1.3d) tha/p"Z)*
is isomorphic to the direct product of a grodpof orderp — 1 and a grougB of orderp” .
The map

(Z/p'Z)* —~ (Z/pL)* =T},

induces an isomorphis — F, andF;, being a finite subgroup of the multiplicative
group of a field, is cyclic (FT, Exercise 3). Thig/p"Z)* > A = ({) for some element
of orderp— 1. Using the binomial theorem, one finds thatp has ordep” ' in (Z/p"Z)*,
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and therefore generatés Thus(Z/p"Z)* is cyclic, with generatoc - (1 + p), and every
element can be written uniquely in the form

¢-(L+py, 0<i<p-1, 0<j<ph
On the other hand,
(Z/8Z)* = {1,3,5,7} = (3,5) =~ Cy x Cy
is not cyclic. The situation can be summarized by:

C(p_l)pr—l p odd,
(Z)p"Z)" = Cy pr =22
CQ X 027'72 P = 2,T > 2.

See Dummit and Foote 1991, 9.5, Corollary 20 for more details.

DEFINITION 3.11. A characteristic subgroupof a groupG is a subgroupH such that
a(H) = H for all automorphisms: of G.

The same argument as [n (1.20) shows that it suffices to check tiBt ¢ H for all
a € Aut(G).

Contrast: a subgroufy of GG is normal if it is stable under all inner automorphisms
of G; it is characteristic if it stable under all automorphisms. In particular, a characteristic
subgroup is normal.

REMARK 3.12. (a) Consider a grou@ and a normal subgroufd. An inner automorphism
of G restricts to an automorphism &f, which may be outer (for an example, $ee B.16f).
Thus a normal subgroup @f need not be a normal subgroup®f However, a character-
istic subgroup offf will be a normal subgroup off. Also a characteristic subgroup of a
characteristic subgroup is a characteristic subgroup.

(b) The centréZ(G) of G is a characteristic subgroup, because

zg=gzallge G= a(z)a(g) =a(g)a(z)allg € G,

and asg runs overG, a(g) also runs ovelG. Expect subgroups with a general group-
theoretic definition to be characteristic.

(c) If H is the only subgroup of/ of orderm, then it must be characteristic, because
a(H) is again a subgroup a@¥ of orderm.

(d) Every subgroup of a commutative group is normal but not necessarily characteristic.
For example, a subspace of dimensioim G = F>, will not be stable unde@L,(IF,) and
hence is not a characteristic subgroup.

Semidirect products

Let N be a normal subgroup @f. Each elemeny of G defines an automorphism of,
n — gng~ ', and so we have a homomorphism

0:G — Aut(N).
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If there exists a subgroup of G such thatG — G/N maps(@ isomorphically onta7/N,
then | claim that we can reconstrugtfrom the triple(V, @, 0|@). Indeed, any € G can
be written in a unique fashion

g=nqg, neN, qeQ

— ¢ is the unique element @ representing in G/N, andn = gq~'. Thus, we have a
one-to-one correspondence (of sets)

G SN x Q.
If g =ngandg’ =n'q, then
g9’ =nqn'q' =n(qgn'q")aq’ =n-0(q)(n') - qq"

DEFINITION 3.13. A groupG is said to be aemidirect producof the subgroupsv and
Q, written N x @, if N is normal and — G//N induces an isomorphisi® = G//N.
Equivalent conditionV and() are subgroups af such that

(i) N < G; (i) NQ =G, (i) NnQ = {1}.
Note that() neednot be a normal subgroup @f.

ExXAMPLE 3.14. (a) InD,, letC,, = (o) andC; = (r); then
D,, = (o) x (1) = C, x Cy.

(b) The alternating subgroup,, is a normal subgroup of,, (because it has inde),
andQ = {(12)} 5 S, /A,. ThereforeS,, = A, x Cs.

(c) The quaternion group can not be written as a semidirect product in any nontrivial
fashion (see Exercise 14).

(d) A cyclic group of ordep?, p prime, is not a semidirect product.

(e) LetG = GL,(k), the group of invertible: x n matrices with coefficients in the
field k. Let B be the subgroup of upper triangular matrices#n1" the subgroup of di-
agonal matrices i/, andU subgroup of upper triangular matrices with all their diagonal
coefficients equal td. Thus, whem = 2,

s ) =G 0)) =G )b

Then,U is a normal subgroup a8, UT = B, andU N'T = {1}. Therefore,
B=UxT.

Note that, whem > 2, the action ofl’ onU is not trivial, and saB is not the direct product
of T"andU.
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We have seen that, from a semidirect product N x (), we obtain a triple

(N,Q,0: Q — Aut(N)).

We now prove that every tripleV, @, ) consisting of two group®v and( and a homo-
morphisméd: Q — Aut(N) arises from a semidirect product. As a set,det= N x @,
and define

(n,q)(n',q') = (n- 0(q)(n'), 4q)-

PrROPOSITION3.15. The above composition law makg&snto a group, in fact, the semidi-
rect product of NV and Q).

PROOF. Write 9n for 6(q)(n), so that the composition law becomes
(n.q)(n'.q") = (n- "1, qq').
Then
((n,q), (W'.d)(n",q") = (n- 0" - 0" qq'q") = (n,q)((n', ') (n",q"))
and so the associative law holds. Becatidg = 1 andf(q)(1) =1,
(1,1)(n,q) = (n,q) = (n,q)(1,1),

and so(1, 1) is an identity element. Next

(n.@)(* n,gh) = (1,1) = (" n,q ") (n,q),

and so(? 'n,¢"') is an inverse fofn, ¢). ThusG is a group, and it easy to check that it
satisfies the conditions (i,ii,iii) of (3.13). O
Write G = N x4 Q for the above group.

EXAMPLE 3.16. (a) Let be the (unique) nontrivial homomorphism
Cy — Aut(C'g) = (s,

namely, that which sends a generatogfto the map: — a?. ThenG =4 C5 %y Cy is
a noncommutative group of ordé2, not isomorphic to4,. If we denote the generators of
C5 andCy by a andb, thena andb generat&~, and have the defining relations

=1, v*=1, bab!=d>

(b) The bijection
(n,q) = (n,q): N xQ — N xpQ
is an isomorphism of groups if and onlydfis the trivial homomorphisn) — Aut(NV),
i.e.,0(q)(n) =nforallge @,be N.
(c) Both S5 andCjy are semidirect products éf; by C; — they correspond to the two
homomorphismg’s — Cy = Aut(Cj).
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(d) Let N = (a,b) be the product of two cyclic groupgs) and (b) of orderp, and let
@ = (c) be a cyclic group of ordep. Definef: ) — Aut(NN) to be the homomorphism
such that
0(c')(a) = ab’, O(c")(b) = b.

[If we regard/NV as the additive groupy = IFI% with a andb the standard basis elements, then
6(c") is the automorphism o¥ defined by the matri>< 1 (1) ).] The groupG =4 N xpQ

is a group of ordep?, with generators, b, c and defining relations
a?=W=c =1, ab=cac’, [ba=1=Ibd.

Because # 1, the group is not commutative. Wheris odd, all elements excepthave
orderp. Whenp = 2, G =~ D,. Note that this shows that a group can have quite different
representations as a semidirect product:

DiE" 4 % Cy 7 (Cy % Cy) % G,

(e) Let N = (a) be cyclic of orderp?, and letQ = (b) be cyclic of orderp, where
pis an odd prime. Theut N ~ C,_; x C, (se€3.1D), and the generator@f is o
wherea(a) = a'*? (hencen?(a) = a'*?, .. ). DefineQ — Aut N by b — «. The group
G =4 N xg @ has generators, b and defining relations

a”’ = 1, =1, bab!=a'".

It is a nonabelian group of ordef, and possesses an element of oyder

For an odd prime, the groups constructed in (d) and (e) are the only nonabelian groups
of orderp?® (see Exercise 21).

(f) Let o be an automorphism, possibly outer, of a graMp We can realizeV as
a normal subgroup of a grou@ in such a way thate becomes the restriction t& of
an inner automorphism af. To see this, let: C,, — Aut(N) be the homomorphism
sending a generatar of C', to & € Aut(NV), and letG = N xy C,. Then the element
g = (1,a) of G has the property that(n,1)g~! = (a(n),1) foralln € N.

The semidirect producV x, () is determined by the triple

(N,Q,0: Q — Aut(N)).

It will be useful to have criteria for when two tripldsV, @, 6) and (N, @, ¢’) determine
isomorphic groups.

LEMMA 3.17.If # and#’ are conjugate, i.e., there exists anc Aut(V) such that)’(q) =
aof(q)oatforall ¢ € Q, then

N X Q ~ N X Q
ProoF. Consider the map

Y:NxpQ — Nxg Q, (n,q)— (a(n),q).
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Then
v(n,q) -v(n',q') = (a(n),q) - (a(n'), q)
= (a(n) - 0'(q)((n')), qq")
= (a(n) - (a0 b(q) o ) (a(n')), qq')
= (a(n) - a(0(q)(n')), qq"),
and

Y((n,q) - (n',q')) = y(n-0(q)(n'), qq")
(a(n) - a(0(q)(n)),qq).

Thereforey is a homomorphism, with inverde:, ¢) — (a~!(n),q), and so is an isomor-
phism. O]

LEMMA 3.18.1f = ¢’ o v with € Aut(Q), then
N xgQ =~ N x¢g Q.

PROOF. The map(n, q) — (n,a(q)) is an isomorphisnV x4 Q) — N xg Q. O
LEMMA 3.19. If @ is cyclic and the subgrouf( ) of Aut(V) is conjugate t@' (@), then
N xgQ ~ N x¢g Q.

PROOF. Leta generate&). Then there exists anand anw € Aut(/N) such that
0'(a") =a-0(a)-a .

The map(n, q) — (a(n), ¢") is an isomorphisniV x, Q — N x4 Q. O

Extensions of groups
A sequence of groups and homomorphisms
1 —- NS G iR Q — 1

is exactif ¢ is injective, 7 is surjective, and<er(7) = Im(:). Thus:(V) is a normal
subgroup ofG' (isomorphic by: to N) andG/.(N) = Q. We often identifyN' with the
subgroup.(N) of G and@ with the quotientG/N.

An exact sequence as above is also referred to agtansion of) by V. An extension
is centralif «(N) C Z(G). For example,

1->N->-NxQ—-0Q—1

is an extension oV by @), which is central if (and only ify is the trivial homomorphism.
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Two extensions of) by /V are said to bésomorphicif there is a commutative diagram

1 —— N G Q 1
[
1 —— N G’ Q 1.

An extension
1-N5G5S Q—1

is said to besplit if it isomorphic to a semidirect product. Equivalent conditions:
(a) there exists a subgrodp C G such thatr induces an isomorphis®@’ — @Q; or
(b) there exists a homomorphism ) — G such thatr o s =id.
In general, an extension will not split. For example [cf. B.14c,d), the extensions

l1-N—-Q—Q/N—1
(/v any subgroup of order in the quaternion grou@) and

1—=0C,—Cpr—C,—1
do not split. We list two criteria for an extension to split.

PROPOSITION3.20 (SLHUR-ZASSENHAUSLEMMA). An extension of finite groups of rel-
atively prime order is split.

PrROOF Rotman 1995, 7.41. O]

PROPOSITION3.21. Let N be a normal subgroup of a groug. If N is complete, thed’
is the direct product ofV with the centralizer ofV in G,

Cg(N)i{gEGmn:ngallneN}.

PROOF. Let@ = C¢(NV). We shall check thal and( satisfy the conditions of Proposi-
tion[3.6.
Observe first that, for any € G, n — gng~': N — N is an automorphism oi,
and (becausév is complete), it must be the inner automorphism defined by an element
v = 7(g) of N; thus
gng P =~ny~ !t alln e N.

This equation shows that'g € @, and hencg = v(v'g) € NQ. Sinceg was arbitrary,
we have shown that = NQ.

Next note that every element 8fN (@ is in the centre ofV, which (by the completeness
assumption) is trivial; henc® N Q = 1.

Finally, for any elemeny = ng € G,

9Qg ' =n(qQq n™' =nQn' =Q

(recall that every element &f commutes with every element 6f). Therefore? is normal
inG. O]
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An extension
1->N—-G—-Q—1

gives rise to a homomorphisth: G — Aut(N), namely,

0'(g)(n) = gng™".
Let ¢ € G map tog in @Q; then the image of’(¢) in Aut(N)/Inn(N) depends only og;
therefore we get a homomorphism

0:Q — Out(N) < Aut(N)/Inn(N).

This map) depends only on the isomorphism class of the extension, and webatiteG, V),
for the set of isomorphism classes of extensions with a givéiihese sets have been ex-
tensively studied.

The Holder program.

Recall that a groug- is simple if it contains no normal subgroup excé@ndG. In other
words, a group is simple if it can't be realized as an extension of smaller groups. Every
finite group can be obtained by taking repeated extensions of simple groups. Thus the
simple finite groups can be regarded as the basic building blocks for all finite groups.

The problem of classifying all simple groups falls into two parts:

A. Classify all finite simple groups;
B. Classify all extensions of finite groups.

Part A has been solved: there is a complete list of finite simple groups. They are the
cyclic groups of prime order, the alternating grouppsfor n > 5 (see the next section),
certain infinite families of matrix groups, and thé “sporadic groups”. As an example of
a matrix group, consider

SL,,(F,) =4 {m x m matricesA with entries inF, such thatdet A = 1}.

Hereq = p”, p prime, andF, is “the” field with ¢ elements (see FT, Proposition 4.15).
0 - 0

. . 0¢C 0 ]
This group may not be simple, because the scalar matfices. , ("™ =1, areinthe

00 ¢
centre. But these are the only matrices in centre, and the groups

PSL,(F,) £ SL,(F,)/{centrg

are simple whemn > 3 (Rotman 1995, 8.23) and whem = 2 andq > 3 (ibid. 8.13). For
the casen = 3 andg = 2, see Exercise 24 (note thRSL;(Fy) = GL3(Fy)).

There are many results on Part B, and at least one expert has told me he considers it
solved, but I'm sceptical.

For an historical introduction to the classification of finite simple groups, see Solomon, Ronald, A brief
history of the classification of the finite simple groups, Bulletin AMS, 38 (2001), pp. 315-352. He notes
(p347) regarding (B): “... the classification of all finite groups is completely infeasible. Nevertheless experi-
ence shows that most of the finite groups which occur in “nature” ... are “close” either to simple groups or to
groups such as dihedral groups, Heisenberg groups, etc., which arise naturally in the study of simple groups.”
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Exercises 13-19

13. Let D,, = {a, bla™, b%, abab) be then™ dihedral group. If» is odd, prove thaD,, ~
(a™) x {a? b), and hence thab,, ~ Cy x D,,.

14*. Let G be the quaternion group (1.8c). Prove thatan't be written as a semidirect
product in any nontrivial fashion.

15*. Let G be a group of ordemn wherem andn have no common factor. & contains
exactly one subgroup/ of orderm and exactly one subgroul of ordern, prove thatz
is the direct product of/ and V.

16*. Prove thalGLy(F;) ~ S;.
17. Let G be the quaternion group (1.8c). Prove that:(G) ~ S,.

18*. Let GG be the set of all matrices iGL3(R) of the form (§ % g) ad # 0. Check that

G is a subgroup o6 L3(R), and prove that it is a semidirect producti®of (additive group)
by R* x R*. Is it a direct product of these two groups?

19. Find the automorphism groups 6f, andSs.
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4 Groups Acting on Sets

General definitions and results

DEFINITION 4.1. LetX be a setand lef be a group. Aeft actionof G on X is a mapping
(9,z) — gr: G x X — X such that
(@) lx =z, forallz € X;
(b) (9192)x = g1(gox), all g1, 92 € G,z € X.
A set together with a (left) action @ is called a (left)z-set
The axioms imply that, for eache G, left translation by,

gL:X_>X7 T = g,

has(g~!); as an inverse, and therefage is a bijection, i.e.g;, € Sym(X). Axiom (b)
now says that

g+ gr: G — Sym(X)
is @ homomorphism. Thus, from a left action Gfon X, we obtain a homomorphism
G — Sym(X), and, conversely, every such homomorphism defines an actiGroafX .

EXAMPLE 4.2. (a) The symmetric grou, acts on{1,2,...,n}. Every subgrougd of S,,
actson{1,2,...,n}.
(b) Every subgroug of a groupG acts onG by left translation,

HxG— GG, (hyz)— hx.

(c) Let H be a subgroup aofr. If C'is a left coset off in G, then so also igC for any
g € G. In this way, we get an action @¢f on the set of left cosets:

GxG/H—G/H, (9,0) gC.
(d) Every groupZ acts on itself by conjugation:
GxG—G, (g9,2)—%=q4gzg "

For any normal subgroufy, G acts onN andG /N by conjugation.

(e) For any groug, Aut(G) acts onG.

A right action X x G — G is defined similarly. To turn a right action into a left action,
setg * v = xg~!. For example, there is a natural right action(@fon the set of right
cosets of a subgroufi in G, namely,(C, g) — Cg, which can be turned into a left action
(9,C) — Cg™.

A morphismof G-sets (bettet7-map G-equivariant mayp) is a mapy: X — Y such
that

o(gr) =gp(z), alged, zeX.

An isomorphismof G-sets is a bijectivé;-map; its inverse is then alsoamap.
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Orbits

Let G actonX. A subsetS C X is said to bestableunder the action of; if
geG, rzeS=gres

The action ofG on X then induces an action 6f on S.
Write © ~¢ y if y = gz, someg € G. This relation is reflexive because= 1z,
symmetric because
y=gr=x=g"y
(multiply by ¢—! on the left and use the axioms), and transitive because

y=gz, z=gy=z=g(9z)= (g
It is therefore an equivalence relation. The equivalence classes are Gatidits. Thus
the G-orbits partitionX. Write G\ X for the set of orbits.
By definition, theG-orbit containingr is

Gzo = {gzo | g € G}.
It is the smallestG-stable subset ok containingz.

EXAMPLE 4.3. (a) Supposé&' acts onX, and leta € G be an element of order. Then
the orbits of(«) are the sets of the form

{xg, axg,...,a" txo}.

(These elements need not be distinct, and so the set may contain fewerdlegmnents.)
(b) The orbits for a subgroufy of GG acting onG by left multiplication are the right
cosets ofH in G. We write H\G for the set of right cosets. Similarly, the orbits f&ar
acting by right multiplication are the left cosets, and we witef{ for the set of left cosets.
Note that the group law o will notinduce a group law ot/ H unlessH is normal.
(c) For a groupG acting on itself by conjugation, the orbits are calleohjugacy
classesfor x € (G, the conjugacy class of is the set

{gzg~"' | g € G}

of conjugates of. The conjugacy class af, consists only ofz, if and only if x, is in the
centre ofG. In linear algebra the conjugacy classessin= GL, (k) are called similarity
classes, and the theory of (rational) Jordan canonical forms provides a set of representatives
for the conjugacy classes: two matrices are similar (conjugate) if and only if they have
essentially the same Jordan canonical form.

Note that a subset oX is stable if and only if it is a union of orbits. For example, a
subgroupH of G is normal if and only if it is a union of conjugacy classes.

The groupd is said to actransitivelyon X if there is only one orbit, i.e., for any two
elementse andy of X, there exists g € G such thayx = .

For example S, acts transitively o 1,2, ...n}. For any subgroug of a groupG, G
acts transitively orG/H. But G (almost) never acts transitively @r (or G/N or N) by
conjugation.

The groupG actsdoubly transitivelyon X if for any two pairs(z, z’), (y,y’) of ele-
ments of X with x # 2’ andy # 3/, there exists a (single) € G such thatyr = y and
gz’ = y'. Definek-fold transitivity, £ > 3, similarly.



4 GROUPS ACTING ON SETS 38

Stabilizers
Thestabilizer(or isotropy group of an element € X is
Stab(z) = {g € G | gz = z}.
It is a subgroup, but it need not be a normal subgroup. In fact:
LEMMA 4.4. If y = gz, thenStab(y) = ¢ - Stab(z) - g .

PrROOF. Certainly, if¢’z = x, then

(99'9 ")y = g9’z = gz = y.

HenceStab(y) D g - Stab(z) - g~*. Conversely, ify'y = y, then

(67'gg)r=9""gy) =9y =1,
and sog—lg'g € Stab(z), i.e.,q' € g- Stab(z) - g~ O

Clearly

ﬂ Stab(x) = Ker(G' — Sym(X)),

reX
which is a normal subgroup a@¥. If (| Stab(xz) = {1}, i.e.,G — Sym(X), thenG is

said to acteffectively(or faithfully). It actsfreelyif Stab(x) = 1 forall z € X, i.e., if
gr=x =g = 1.

EXAMPLE 4.5. (a) LetG act onGG by conjugation. Then
Stab(z) = {g € G | gz = xg}.

This group is called theentralizerC(z) of x in G. It consists of all elements @ that
commute with, i.e., centralize, The intersection

ﬂCg(x):{geCng:xg Vo € G}

zeX
is a normal subgroup df, called thecentre Z(G) of G. It consists of the elements 6f
that commute with every element 6f
(b) LetG act onGG/ H by left multiplication. Therbtab(H) = H, and the stabilizer of
gHisgHg*.
For a subset of X, we define thestabilizerof S to be
Stab(S) = {g € G | ¢S = S}.
The same argument as in the proof|of [4.4) shows that
Stab(gS) = g - Stab(S) - g~

EXAMPLE 4.6. LetG act onG by conjugation, and lef/ be a subgroup af. The stabilizer
of H is called thenormalizer N (H) of H in G:

No(H)={g9 € G|gHg™" = H}.
Clearly N¢(H) is the largest subgroup ¢f containingH as a normal subgroup.
AsIDE. In Exampld 1.2]1, the elemegt¢ N (H) even thouglyHg ' C H.
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Transitive actions

PROPOSITION4.7. Supposé&- acts transitively onX, and letz, € X; then
gH — gzo : G/ Stab(zg) — X
is an isomorphism of/-sets.

PrROOF. It is well-defined because if, i’ € Stab(zy), thenghzy = gzo = gh'z, for any
g € G. ltis injective because

g0 = g'ro = g 'g'ro = 29 = g, ¢ lie in the same left coset ditab(zy).

It is surjective becaus@ acts transitively. Finally, it is obviouslg-equivariant. O

The isomorphism isiot canonical it depends on the choice of € X. Thus to give a
transitive action of> on a setX is not the same as to give a subgrouptaf

COROLLARY 4.8. LetGG act onX, and letO = Gx, be the orbit containing:,. Then the
number of elements A is
#0O = (G : Stab(zy)).

For example, the number of conjugated ¢! of a subgroupH of G is (G: Ng(H)).

PROOF. The action of7 onO is transitive, and sg — gz, defines a bijectior / Stab(z) —
GIO. U]

This equation is frequently useful for computi#g).

PROPOSITION4.9. If GG acts transitively onX, then, for anyz, € X,
Ker(G — Sym(X))
is the largest normal subgroup containedStab(x).

PROOF. Letz, € X. Then

Ker(G — Sym(X)) = ﬂ Stab(z) = m Stab(gxo) @ﬂg - Stab(zg) - g .
zeX geqG

Hence, the proposition is a consequence of the following lemma. O

LEMMA 4.10. For any subgroupH of a groupG, ﬂgeG gHg™ ! is the largest normal sub-
group contained irf.

PROOF. Note thatN, =4 ﬂgec gHg™', being an intersection of subgroups, is itself a
subgroup. It is normal because

g1 Nogi ' = ﬂ (919)No(g919) ™" = No
geG
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— for the second equality, we used thatgasins over the elements 6f, so also does, g.
ThusN, is a normal subgroup a@¥ contained inlLH1-! = H. If N is a second such group,
then

N=gNg'cgHg"

forall g € G, and so
Nc()gHg" =N O
geG

The class equation

When X is finite, it is a disjoint union of a finite number of orbits:
X=Jo; (disjoint union)

Hence:

ProPOSITION4.11. The number of elements i is
#X = #0;=> (G:Stab(z;)), z;in0;.
=1 =1

WhenG acts on itself by conjugation, this formula becomes:

PROPOSITION4.12 (Q.ASS EQUATION).

(G:1) =) (G: Cu(x))

(x runs over a set of representatives for the conjugacy classes), or

(G:1)=(2(G): 1)+ (G Caly))

(y runs over set of representatives for the conjugacy classes containing more than one
element).

THEOREM4.13 (CaUCHY). If the primep divides(G : 1), thenG contains an element of
order p.

PROOF. We use induction oriG : 1). If for somey not in the centre of7, p does not
divide (G : C¢(y)), thenp|C(y) and we can apply induction to find an element of order
p in Cs(y). Thus we may suppose thatdivides all of the termsG : Cg(y)) in the
class equation (second form), and so also dividéS). But Z(G) is commutative, and it
follows from the structure theorﬁof such groups thaf (G) will contain an element of
orderp. H

?Here is a direct proof that the theorem holds for an abelian géhu/e use induction on the order of
Z. It suffices to show thak contains an element whose order is divisiblegbyor then some power of the
element will have order exactly. Letg # 1 be an element of. Eitherp divides the order of;, or (by
induction) there is an element afof Z whose order irZ/({g) is divisible byp. In the second case, the order
of h itself must be divisible by.
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COROLLARY 4.14. Any group of orde®p, p an odd prime, is cyclic or dihedral.

PRoOOF. From Cauchy’s theorem, we know that sucliacontains elements and o of
orders 2 and respectively. Letd = (o). Then H is of index 2, and so is normal.
Obviouslyr ¢ H,and soG = HU Hr :

G={1l,0,...,0""  707,..., 0" 7}

As H isnormal,ror—! = o', somei. Because? = 1,0 = 7207 2 = 7(to7 )7 ! = 0%,

and sa? = 1 modp. The only elements df, with squarel are+1, and sa@ = 1 or —1 mod

p. In the first case, the group is commutative (any group generated by a set of commuting
elements is obviously commutative); in the secend ! = +~! and we have the dihedral

group [Z-ID). &

p-groups
THEOREM4.15. A finite p-group+# 1 has centre# {1}.

PROOF. By assumption(G : 1) is a power ofp, and it follows thatG : C¢(y)) is power
of p (# p°) for all y in the class equation (second form). Sipcdivides every term in the
class equation except (perhag8) &) : 1), it must divide(Z(G) : 1) also. O

COROLLARY 4.16. A group of ordenp™ has normal subgroups of ordef for all n < m.

PROOF. We use induction om. The centre ofy contains an elememtof orderp, and so

N = (g) is a normal subgroup af of orderp. Now the induction hypothesis allows us
to assume the result fa¥ /N, and the correspondence theor¢m|(3.3) then gives it to us for
G. O

PROPOSITION4.17. A group of order? is commutative, and hence is isomorphicitpx
Cp or Cpe.

PrRoOOF. We know that the centrg is nontrivial, and tha&z/Z therefore has orderor p.
In either case it is cyclic, and the next result implies fias commutative. O

LEMMA 4.18. Supposé€- contains a subgroug/ in its centre (hencéd is normal) such
that G/ H is cyclic. Then7 is commutative.

PROOF. Leta € G be such that H generates?/H, so thatG/H = {(aH)' | i € Z}.
Since(aH)' = a'H, we see that every elementGfcan be writtery = a'h with h € H,
t € Z. Now , 3 o
ath-a"h'  =a'a"hh because? C Z(G)
=d"a'Wh
=a"h' - a'h.
[

REMARK 4.19. The above proof shows thatif C Z(G) andG contains a set of repre-
sentatives fo7/H whose elements commute, théris commutative.

It is now not difficult to show that any noncommutative group of ondeis isomorphic
to exactly one of the groups constructed in (3.16d,e) (Exercise 21). Thus, up to isomor-
phism, there are exactly two noncommutative groups of gptler
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Action on the left cosets

The action ofGG on the set of left coset§/H of H in G is a very useful tool in the study
of groups. We illustrate this with some examples.
Let X = G/H. Recall that, for any € G,

Stab(gH) = g Stab(H)g™' = gHg ™!

and the kernel of
G — Sym(X)

is the largest normal subgro@geg gHg~! of G contained inA.

REMARK 4.20. (a) LetH be a subgroup afr not containing a normal subgroup Gfother
thanl. ThenG — Sym(G/H) is injective, and we have realized as a subgroup of a
symmetric group of order much smaller thgd : 1)!. For example, ifG is simple, then
the Sylow theorems imply that has many proper subgroups # 1 (unlessG is cyclic),
but (by definition) it has no such normal subgroup.

(b) If (G : 1) does not dividdG : H)!, then

G — Sym(G/H)

can't be injective (Lagrange’s theoreim, 1.15), and we can concludédticantains a nor-
mal subgroup# 1 of G. For example, if7 has ordeg9, then it will have a subgroupy of
orderl1 (Cauchy’s theorenf, 4.13), and the subgroup must be normal. Irdfaet)N x Q).

ExAamPLE 4.21. Corollary 4.14 shows that every groGpof order6 is either cyclic or
dihedral. Here we present a slightly different argument. According to Cauchy’s theorem
(4.13), G must contain an element of order3 and an element of order2. Moreover
N =4 (o) must be normal becausedoesn’t divide2! (or simply because it has ind&).
Let H = (7).

Either (a)H is normal inG, or (b) H is not normal inGG. In the first casegro~! = T,
i.e.,or = 7o, and so[(4.18) shows thét is commutative(7 ~ C, x C3. In the second
case(G — Sym(G/H) is injective, hence surjective, and 60~ S;.

Permutation groups

ConsiderSym(X) whereX hasn elements. Since (up to isomorphism) a symmetry group
Sym(X) depends only on the number of elementsKinwe may takeX = {1,2,...,n},
and so work Wit S,. Consider a permutation

(1 2 3 ...
T a) a2 aB) ... a®) )
Thena is said to beevenor odd according as the number of pairs j) with i < j and

a(i) > a(j) is even or odd. Thsignature sign(«), of a is +1 or —1 according asy is
even or odd.

B\We, of course, define multiplication ifi,, to be composition; other authors (see, for example, Artin
1991) write things backwards.
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AsSIDE: To compute the signature af connect (by a line) each elemenh the top row to
the element in the bottom row, and count the number of times the lines cre$seven or
odd according as this number is even or odd. For example,

1 2 3 4 5
3 5 1 4 2
is even (6 intersections).

For any polynomial’ (X1, ..., X,,) and permutatiom of {1, ...,n}, define
(QF)(X1, ooy X)) = F(Xaq), s Xam)s
i.e.,aF is obtained from#' by replacing eaclkX; with X, ;. Note that
(aBF) (X1, ... X)) = F(Xapay, - - ) = F(Xagay, - --) = (@(BF) (X1, ..., X).

Let G(Xl, --'>Xn) - H X] - Xl) Then

i<

(aG)(le ’Xn) = H(Xa(j) - Xa(i))‘

1<j
HenceaG = sign(«) - G. Since this holds for al, («3)G = sign(a)G, but

(aB)G = a(BG) = a(sign(F)G) = sign f(aG) = sign(«) sign(5)G.

Hence
sign(af) = (sign o) (sign ).
and we have shown thatign” is a homomorphismS,, — {£1}. Whenn > 2, itis
surjective, and so its kernel is a normal subgroug,pbf order%’, called thealternating
group A,,.
A cycleis a permutation of the following form

i1 g > i3 — -+ — 1, — 4y, remaining:’s fixed.
The:; are required to be distinct. We denote this cycley....i,.), and callr its length
— note thatr is also its order. A cycle of length is called atransposition. A cycle (i)
of length1 is the identity map. Thsupport of the cycldi; ..., ) is the set{i;, ..., i},
and cycles are said to lmbsjoint if their supports are disjoint. Note that disjoint cycles
commute. If

a = (i1..0) (J1---Js) - - (I1...1) (disjoint cycles)

then
a™ = (11...0.)" (G- s)™ - (L l)™ (disjoint cycles)

and it follows thatx has order lcrfy, s, ..., u).

PROPOSITION4.22. Every permutation can be written (in essentially one way) as a product
of disjoint cycles.
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PROOF. Leta € S, and letO C {1,2,...,n} be an orbit for(«). If #0 = r, then for
anyi € O,
O = {i,a(i),...,a" (i)}.

Thereforea and the cycldia(i) ... o '(i)) have the same action on any elementof
Let

be a the decomposition dfL, ..., n} into a disjoint union of orbits fof«), and lety; be
the cycle associated (as above) with Then

is a decomposition ofv into a product of disjoint cycles. For the uniqueness, note that

a decompositionr = ~; ---7,, into a product of disjoint cycles must correspond to a
decomposition of{ 1, ...,n} into orbits (ignoring cycles of length and orbits with only

one element). We can drop cycles of length one, change the order of the cycles, and change
how we write each cycle (by choosing different initial elements), but that's all because the
orbits are intrinsically attached te O]

For example,

12345678
(5 S 19136 8)-(15)(27634)(8).

It has order Icn2, 5) = 10.

COROLLARY 4.23. Each permutatiorx can be written as a product of transpositions; the
number of transpositions in such a product is even or odd accordingiagven or odd.

PROOF. The cycle

(ivig...7p) = (iviz) - -+ (Gp—2tr—1)(ir—1%r),
and so the first statement follows from the proposition. Becaigaes a homomorphism,
and the signature of a transposition-$, sign(a) = (—1)#transpositions O

Note that the formula in the proof shows that the signature of a cycle of lenggth
(—1)"~1, that is, anr-cycle is even or odd according ass odd or even.

It is possible to define a permutation to be even or odd according as it is a product of an
even or odd number of transpositions, but then one has to go through an argument as above
to show that this is a well-defined notion.

The corollary says thaf,, is generated by transpositions. Eby there is the following
result.

COROLLARY 4.24. The alternating groupd,, is generated by cycles of length three.
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PROOF. Any a € A, is the product of an even number of transpositiens; ¢t} - - - ¢,,t, ,
but the product of two transpositions can always be written as a prod@eatyafies:

(i7)(51) = (igl) casej = k,
(ig)(kl) = < (i7)(5k)(jk) (k1) = (ijk)(jkl) casei,j, k,1 distinct,
1 case(ij) = (kl).

]

Recall that two elements andb of a group are said to be conjugate~ b if there
exists an element € G such thab = gag—!, and that conjugacy is an equivalence relation.
For any groups, it is useful to determine the conjugacy classe§'in

EXAMPLE 4.25. InS,,, the conjugate of a cycle is given by:
giv ... in)g = (g(i1) ... g(ir)).

Henceg(ii...4,)(j1---Js) .- (- L)g ™ = (g(in) - 9(3))(9(71) - - - 9(4s)) - - - (g(ln)---g (L))
(even if the cycles are not disjoint). In other words, to obtaig—*, replace each element
in a cycle ofa be its image undey.

We shall now determine the conjugacy classes,in By a partition of n, we mean a
sequence of integers, . .., n; such thatl <n; <n,;,; <n(alli)and

ny+ng+ -+ ng=n.

Thus there ara, 2, 3, 5, 7, 11,... partitions ofl, 2, 3, 4, 5, 6,... respectively (and
1,121,505 partitions of61). Note that a partition

{1,2,....,n} =01 U ...U Oy (disjoint union)
of {1,2,...,n} determines a partition of,
n=ny+ns+..+ng n;==H0;.

Since the orbits of an elementof S,, form a partition of{1, ..., n}, we can attach to each
sucha a partition ofn. For example, if

a=(l1...0,) - (l1...1y,), (disjointcycles) 1 <n; <mn;q,
then the partition of: attached tav is
L1,..., 1, ng, ..., n (n — > n; ones.

PROPOSITION4.26. Two elements: and 3 of S,, are conjugate if and only if they define
the same partitions of.
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PROOF. = : We saw in [(4.25) that conjugating an element preserves the type of its
disjoint cycle decomposition.

< : Sincea andg define the same partitions of their decompositions into products
of disjoint cycles have the same type:

a= (i1 i) gs) (- 1),
B=(. NG g,

TR TN MU TR S A
(T (A TP (A A

gag™t =p. O
EXAMPLE 4.27. (ijk) = (J030)(123) ((05)

If we defineg to be

then

(n—1)--(n—k+1
k

REMARK 4.28. Forl < k < n, there are®
needed so that we don’t count

! distinctk-cycles inS,. Thel is

(ivig .. i) = (ipis. . ip1) = ...

k times. Similarly, it is possible to compute the number of elements in any conjugacy
class inS,, but a little care is needed when the partitiomdfias several terms equal. For
example, the number of permutationsdnof type (ab)(cd) is

1 /4x3 2x1

— X = 3.

2 ( 2 2 )
The 3 is needed so that we don't coufith)(cd) = (cd)(ab) twice. ForS, we have the
following table:

Partition Element No. in Conj. Class Parity

I+1+1+1 1 1 even
1+1+2 (ab) 6 odd
1+3 (abe) 8 even
242 (ab)(cd) 3 even

4 (abed) 6 odd

Note thatA, contains exactlyy elements of orde2, namely those of type + 2, and that
together withl they form a subgroup’. This group is a union of conjugacy classes, and is
therefore a normal subgroup 6f.

THEOREM4.29 (GaLOIS). The groupA,, is simple ifn > 5

REMARK 4.30. Forn = 2, A, is trivial, and forn = 3, A, is cyclic of order3, and
hence simple; fom = 4 it is nonabelian and nonsimple (it contains the normal, even
characteristic, subgroup — see above).
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LEMMA 4.31. Let N be a normal subgroup of,, (n > 5); if N contains a cycle of length
three, then it contains all cycles of length three, and so eqdalgby[4.24).

PROOF. Let~ be the cycle of length three i, and leto be a second cycle of length three
in A,,. We know from [(4.2B) that = gyg~! for someg € S,,. If g € A, then this shows
thata is also inN. If not, because > 5, there exists a transpositiore S,, disjoint from

«a. Thentg € A, and

a=tat™! = tgvg_lt_l,

and so agai € N. O

The next lemma completes the proof of the Theorem.

LEMMA 4.32. Every normal subgroupy of A,,, n > 5, N # 1, contains a cycle of length
3.

PROOF. Leta € N, a # 1. If ais not a3-cycle, we shall construct another element

o € N, o # 1, which fixes more elements dfi,2,...,n} than doesy. If o/ is not a
3-cycle, then we can apply the same construction. After a finite number of steps, we arrive
at a3-cycle.

Supposer is not a3-cycle. When we express it as a product of disjoint cycles, either it
contains a cycle of length 3 or else it is a product of transpositions, say

(i) o= (iyigiz...)--- Of
(i) = (i132)(igiy) - - -

In the first caseq moves two numbers, say, is, other thaniq, i, i3, becausex +#
(iligig), (21 ce 24) Let’}/ = (132425) Thena1 =df ’}/Oé’yil = (i1i2i4 .. ) ... € N, and
is distinct froma (because it acts differently o). Thusa/ =4 aja™' # 1, buta/ =
yay~ta~! fixesi, and all elements other than ..., i5 fixed by — it therefore fixes more
elements than.

In the second case, form a1, o’ as in the first case with as in (ii) andi; any element
distinct fromiy, is, i3,74. Thena; = (iyia)(isis)-- - is distinct froma because it acts
differently oniy. Thusa’ = a;a™! # 1, buta/ fixesi; andi,, and all elementst iy, ..., i5
not fixed bya — it therefore fixes at least one more element than O

COROLLARY 4.33. For n > 5, the only normal subgroups 6f, are 1, A,,, andS,,.

PrOOF If N isnormalinS,, thenNnNA, isnormalinA,. Therefore eitheNNA, = A,
or N N A, = {1}. In the first caseN D> A,, which has index in S,,, and soN = A, or
S,. In the second case, the map- zA,,: N — S,,/A, is injective, and saV has orden
or 2, but it can’t have orde2 because no conjugacy classdp (other than{1}) consists of
a single element. O

REMARK 4.34. A groupG is said to besolvableif there exist subgroups
G=GyD>DG DG, D>G3D---DG, ={1}

such that eaclir; is normal inGG;_; and each quotien¥;_, /G, is commutative. Thusl,
(alsosS,) is not solvable ifn > 5.
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Let f(X) € Q[X] be of degree:. In FT, §3, we attach tgf a subgroup of the group of
permutations of the roots ¢f, G, C S,,, and we show that the roots gfcan be obtained
from the coefficients of by extracting radicals if and only if7; is solvable (ibid. 5.23).
For everyn, there exist (lots of) polynomialg of degreen with Gy = .S,,.

The Todd-Coxeter algorithm.

Let G be a group described by a finite presentation, and{ldie a subgroup described
by a generating set. Then the Todd-Coxeter algo@‘ima strategy for writing down the
set of left cosets off in GG together with the action afr on the set. | illustrate it with an
example (from Artin 1991, 6.9, which provides more details, but note that he composes
permutations backwards).

LetG = (a,b, c|a®, 1?, %, cba) and letH be the subgroup generateddfstrictly speak-
ing, H is the subgroup generated by the element oépresented by the reduced waejd
The operation o7 on the set of cosets is described by the action of the generators, which
must satisfy the following rules:

(i) Each generatora( b, c in our example) acts as a permutation.
(i) The relations ¢3, %, ¢?, cba in our example) act trivially.
(iii) The generators off (c in our example) fix the cosat.
(iv) The operation on the cosets is transitive.

The strategy is to introduce cosets, denated] . . . with 1 = 1H, as necessatry.

Rule (iii) tells us simply thatl = ¢. We now apply the first two rules. Since we
don't know whatal is, let's denote iR2: a1l = 2. Similarly, leta2 = 3. Now a3 = a®1,
which according to (ii) must be 1. Thus, we have introduced three (potential) dogets
3, permuted by: as follows:

14524535 1.
What isb1? We don’t know, and so it is prudent to introduce another cosetbl. Now
b4 = 1, and so we have

1545 1,

We still have the relationba. We knowal = 2, but we don’t know whab?2 is, and so set
b2 = 5. By (iii) ¢1 = 1, and by (ii) applied ta:ba we havec5 = 1. Therefore, according to
(i) we must haveés = 1; we drop5, and so now2 = 1. Sinceb4 = 1 we must have = 2,
and so we can dropalso. What we know can be summarized by the table:

a a a b b c c a b c
1 2 3 1 2 1 1 1 2 1 1
2 3 1 2 1 2 2 3 2
3 1 2 3 3 3 1 2 3

1470 solve a problem, an algorithm must always terminate in a finite time with the correct answer to the
problem. The Todd-Coxeter algorithm does not solve the problem of determining whether a finite presentation
defines a finite group (in fact, there is no such algorithm). It does, however, solve the problem of determining
the order of a finite group from a finite presentation of the group (use the algorithniftith trivial subgroup
1)
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The bottom right corner, which is forced by (ii), tells us that= 3. Hence alsa3 = 2,
and this then determines the rest of the table:

a a a b b c c a b c
1 2 3 1 2
2 3 1 2 1
3 1 2 3 3 3 2 3 1 2 3

(=
—_
N
W DN
—
N

We find that we have three cosets on which, ¢ act as
a=(123) b=(12) c=(23).

More precisely, we have written down a mé&p— S that is consistent with the above
rules. A theorem (Artin 1991, 9.10) now says that this does in fact describe the action of
G onG/H. Since the three elements23), (12), and(23) generatess, this shows that the
action of G on G/ H induces an isomorphisid — Ss3, and thatH is a subgroup of order
2.

In (Artin 1991, 6.9) it is explained how to make this procedure into an algorithm which,
when it succeeds in producing a consistent table, will in fact produce the correct table.

This algorithm is implemented in Maple, except that it computes the actionghe
cosets. Here is a transcript:

>with(group); [loads the group theory package.]

>G:=grelgroup( {a,b,c }, {[a,a,a],[b,b],[c,c],[a,b,c] 1); [defines
G to have generators a,b,c and relations aaa, bb, cc, abc]

>H:=subgrel( {x=[c] },G); [defines H to be the subgroup generated
by c]

>permrep(H);

permgroup(3, a=[[1,2,3],b=[1,2],c=[2,3]])

[computes the action of G on the set of right cosets of H in
GJ.

Primitive actions.

Let G be a group acting on a s&t, and letr be a partition ofX. We say thatr is stabilized
by G if
Aer=gAem.

EXAMPLE 4.35. (a) The subgrou@ = ((1234)) of S, stabilizes the partitiofi{1, 3}, {2,4}}
of {1,2,3,4}.

(b) Identify X = {1,2,3,4} with the set of vertices of the square on whibh acts
in the usual way, namely, with = (1234), 7 = (2,4). ThenD, stabilizes the partition
{{1,3},{2,4}}.

(c) Let X be the set of partitions dft, 2, 3,4} into two sets, each with two elements.
ThenS, acts onX, andKer(S; — Sym(X)) is the subgroup” defined in|(4.2B).

The groupG always stabilizes the trivial partitions of, namely, the set of all one-
element subsets of, and{X }. When it stabilizes only those partitions, we say that the
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action isprimitive; otherwise it ismprimitive. A subgroup oSym(X) (e.g., ofS,,) is said
to beprimitive if it acts primitively on X. Obviously, S, itself is primitive, but Example
[4.38b shows thab,, regarded as a subgroup.®f in the obvious way, is not primitive.

EXAMPLE 4.36. A doubly transitive action is primitive: if it stabilized

Hx, o', 3 {y, ...}
then there would be no element sendingz’) to (x, y).

REMARK 4.37. TheG-orbits form a partition ofX that is stabilized by. If the action is
primitive, then the partition into orbits must be one of the trivial ones. Hence

action primitive = action transitive or trivialgz = z all g, x).

For the remainder of this section(= is a finite group acting transitively on a seX
with at least two elements

PROPOSITION4.38. The groupG acts imprimitively if and only if there is an
ACX, A#£X, #A>2,
such that, for eacly € G, eithergA = AorgAnN A = 0.

PROOF. —: The partitionr stabilized by contains such an.
<: From such am, we can form a partitiod A, g1 A, g2 A, ...} of X, which is stabi-
lized byG. [

A subsetA of X such that, for each € G, gA = AorgAn A = () is calledblock
PROPOSITION4.39. Let A be a block inX with#A > 2, A # X. Foranyx € A,
Stab(z) & Stab(A) G G.
PROOF. We haveStab(A) D Stab(z) because
gr=1=gANA#)=gA=A.

Lety € A, y # x. Becausér acts transitively onX, there is ag € G such thaigx = y.
Theng € Stab(A), butg ¢ Stab(z).
Lety ¢ A. Thereis & € G such thayx = y, and thery ¢ Stab(A). O

THEOREM4.40. The groupG acts primitively onX if and only if, for one (hence ally in
X, Stab(z) is @ maximal subgroup af.

PROOF. If G does not act primitively orX, then (se¢ 4.38) there is a blogkG X with at
least two elements, and o (4.39) shows thab(x) will not be maximal for any: € A.
Conversely, suppose that there existaan X and a subgroug/ such that

Stab(z) & H & G.

Then | claim thatd = Hx is a block# X with at least two elements.

BecausdT # Stab(x), Hx # {z},andso{z} G A G X.

If g € H,thengA = A. If ¢ ¢ H, thengA is disjoint from A: for supposehx = h'x
somel’ € H;thenh/~'gh € Stab(z) C H, sayh/~'gh = h",andg = W'hW'h~' € H. [
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Exercises 20-33

20*. (a) Show that a finite group can’t be equal to the union of the conjugates of a proper
subgroup.
(b) Give an example of a proper subseof a finite groupG such thatz = UgeG gSgt.

21*. Prove that any noncommutative group of orgérp an odd prime, is isomorphic to
one of the two groups constructed fin (3.16d).

22*. Letp be the smallest prime dividing~ : 1) (assumed finite). Show that any subgroup
of G of indexp is normal.

23*. Show that a group of ordéxm, m odd, contains a subgroup of index (Hint: Use
Cayley’s theorem 1.11)

() Show thatG : 1) = 168.

(b) Let X be the set of lines through the originTit§; show thatX has7 elements, and
that there is a natural injective homomorphiéh— Sym(X) = S;.

(c) Use Jordan canonical forms to show thahas six conjugacy classes, with21, 42,
56, 24, and24 elements respectively. [Note thatif is a freelF; [a]-module of rank
one, therEndg, o (M) = Fyla].]

(d) Deduce tha is simple.

25. Let G be a group. IfAut(G) is cyclic, prove thatz is commutative; if further( is
finite, prove that: is cyclic.

26. Show thatsS,, is generated byl 2), (13),...,(1n); also by(12),(23),...,(n — 1n).

27*. Let K be a conjugacy class of a finite grogpcontained in a normal subgroup
of G. Prove that' is a union ofkt conjugacy classes of equal sizefh wherek = (G :
H - Cg(x)) foranyzx € K.

28*. (a) Leto € A,. From Ex. 27 we know that the conjugacy classrah S,, either
remains a single conjugacy class4p or breaks up as a union of two classes of equal size.
Show that the second case occuts= ¢ does not commute with an odd permutation
<= the partition ofn defined bys consists of distinct odd integers.

(b) For each conjugacy clagsin A, give a member of(, and determingtK.

29*. Let (G be the group with generatossb and relations* = 1 = 02, aba = bab.

(a) (4 pts) Use the Todd-Coxeter algorithm (with= 1) to find the image of> under
the homomorphisnéz — S,,, n = (G : 1), given by Cayley’s Theorem 1.11. [No
need to include every step; just an outline will do.]

(b) (1 pt) Use Maple to check your answer.

30*. Show that if the action ofs on X is primitive and effective, then the action of any
normal subgroug? # 1 of G is transitive.

31.(a) Check thatd, has8 elements of ordes, and3 elements of orde?. Hence it has no
element of ordesé.
(b) Prove that4, has no subgroup of ordér(cf. [1.18b). (Usé 4.21.)
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(c) Prove that4, is the only subgroup of, of order12.

32.Let G be a group with a subgroup of indexProve:
(@) If Gis simple, ther(G : 1) dividesr!.
(b) If r = 2,3, or4, thenG can't be simple.
(c) There exists a nonabelian simple group with a subgroup of iadex

33. Prove thats,, is isomorphic to a subgroup of,, ..



5 THE SYLOW THEOREMS; APPLICATIONS 53

5 The Sylow Theorems; Applications

In this section, all groups are finite.
Let G be a group and lep be a prime dividing(G: 1). A subgroup ofG is called
a Sylow p-subgroup of G if its order is the highest power of dividing (G : 1). The
Sylow theorems state that there exist Sylasubgroups for all primeg dividing (G: 1),
that the Sylowp-subgroups for a fixe@h are conjugate, and that evepysubgroup ofG
is contained in such a subgroup; moreover, the theorems restrict the possible number of
Sylow p-subgroups irG.

The Sylow theorems

In the proofs, we frequently use that(fis an orbit for a groupd acting on a sek, and
zo € O, then the magf — X, g — hxo induces a bijection

H/ Stab(zy) — O;

see[(4.J7). Therefore
(H : Stab(xg)) = #0O.

In particular, whenH is a p-group, #0 is a power ofp: either O consists of a single
element, oe£0 is divisible byp. SinceX is a disjoint union of the orbits, we can conclude:

LEMMA 5.1. Let H be ap-group acting on a finite seX, and letX* be the set of points
fixed byH; then
#X =#X"  (modp).

When the lemma is applied tgpagroup H acting on itself by conjugation, we find that
(Z(H):1)=(H :1) mod p

and sop|(Z(H): 1) (cf. the proof of 4.1F).

THEOREMS5.2 (SrLow I). LetG be a finite group, and let be prime. Ifp"|(G : 1), then
G has a subgroup of order".

ProoF. According to [4.1), it suffices to prove this withthe highest power qf dividing
(G : 1), and so from now on we assume tli&t: 1) = p"m with m not divisible byp. Let

X = {subsetsof G with p" element$,
with the action ofGG defined by
GxX— X, (g,A)HgAg{chaeA}.

Let A € X, and let
H =Stab(A) L {ge G| gA = A}.
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Foranyag € A, h — hay: H — Aisinjective (cancellation law), and 67 : 1) < #A =
p". In the equation
(G:1)=(G:H)(H:1)

we know that(G : 1) = p"m, (H : 1) < p", and thatG : H) is the number of elements in
the orbit of A. If we can find anA such thap doesn’t divide the number of elements in its
orbit, then we can conclude that (for such4)n H = Stab A has ordep’.

The number of elements i is

4x = ( p'm ) _ m)(p'm —1)--- (p'm — i)+ (p'm — p" +1)

P’ prpr—=1--@ -1 -p+1)
Note that, because< p", the power op dividing p"m — i is the power op dividing ;. The
same is true fop” — i. Therefore the corresponding terms on top and bottom are divisible

by the same powers @f and s does not divide# X . Because the orbits form a partition
of X,

#X = #0;, O the distinct orbits
and so at least one of t§eO; is not divisible byp. O

ExAmMPLE 5.3. LetF, = Z/pZ, the field withp elements, and letr = GL,,(F,). The
n x n matrices inG' are precisely those whose columns form a basi&forThus, the first
column can be any nonzero vectorlij, of which there arg™ — 1; the second column
can be any vector not in the span of the first vector, of which therg"arep; and so on.
Therefore, the order af is

" =D " —p)@"—p*) - @"—p" ")

I

and so the power qf dividing (G : 1) is p'*2*+(»=1) Consider the matrices of the form

1 % -+ %
01 -+ =
0 0 --- =
00 --- 1

They form a subgroupy of orderp™=tp"=2...p, which is therefore a Sylow-subgroup
G.

REMARK 5.4. The theorem gives another proof of Cauchy’s theofem|(4.13). If a prime
divides(G: 1), then H will have a subgrougd of orderp, and anyg € H, g # 1, is an
element ofG of orderp.

REMARK 5.5. The proof of Theorefn §.2 can be modified to show directly that for each
powerp” of p dividing (G : 1) there is a subgroufy of GG of orderp”. One again writes

(G : 1) = p"m and considers the séf of all subsets of ordey”. In this case, the highest
powerp™ of p dividing #X is the highest power qgf dividing m, and it follows that there

is an orbit inX whose order is not divisible by°*!. For anA in such an orbit, the same
counting argument shows thatab(A) hasp” elements. We recommend that the reader
write out the details.
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THEOREM 5.6 (SrLow Il). LetG be a finite group, and lefG : 1) = p"m with m not
divisible byp.
(a) Any two Sylow-subgroups are conjugate.
(b) Lets, be the number of Syloptsubgroups ir5; thens, = 1 modp ands,|m.
(c) Anyp-subgroup of is contained in a Sylow-subgroup.
Let H be a subgroup of:. Recall {4.6] 4.8) that the normalizer Bfin G is

No(H)={g€ G |gHg™' = H},
and that the number of conjugatesiéfin G is (G : Ng(H)).

LEMMA 5.7. Let P be a Sylow-subgroup of7, and letH be ap-subgroup. IfH normal-
izesP, i.e., if H C Ng(P),thenH C P. In particular, no Sylowp-subgroup ofGG other
than P normalizesP.

PROOF. BecauseH and P are subgroups alNg(P) with P normal in Ng(P), HP is a
subgroup, and//H N P = HP/P (apply[3.2). ThereforéH P : P) is a power o (here
is where we use thatl is ap-group), but

(HP:1)=(HP: P)(P:1),

and(P : 1) is the largest power gf dividing (G : 1), hence also the largest power of
dividing (HP : 1). Thus(HP : P) =p" = 1,andH C P. O

PROOF OFSyLow Il. (a) LetX be the set of Sylow-subgroups irG, and letG act onX
by conjugation:
(9,P) — gPg': G x X — X.

Let O be one of the7-orbits: we have to show is all of X.

Let P € O, and consider the action by conjugationfobn O. This singleG-orbit may
break up into severdP-orbits, one of which will bl P}. In fact this is the only one-point
orbit because

{Q} is a P-orbit «<= P normalizes)),

which we know [(5.]V) happens only fa) = P. Hence the number of elements in every
P-orbit other than{ P} is divisible byp, and we have tha#O = 1 modp.

Suppose there existsA ¢ O. We again letP act onO, but this time the argument
shows that there are no one-point orbits, and so the number of elements irPeudsit is
divisible byp. This implies that#O is divisible byp, which contradicts what we proved in
the last paragraph. There can be no sk¢land saO is all of X.

(b) Sinces,, is now the number of elements , we have also shown that = 1 (mod
p).

Let P be a Sylowp-subgroup ofz. According to (a)s, is the number of conjugates of
P, which equals
(G:1) (G:1) m

(G : Ng(P)) = (Na(P) : 1) = (Ng(P): P)-(P:1) - (Ne(P) : P)

This is a factor ofn.
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(c) Let H be ap-subgroup of7, and letH act on the seX of Sylow p-subgroups by
conjugation. Becausg X = s, is not divisible byp, X* must be nonempty (Lemn@.l),
i.e., at least oné{-orbit consists of a single Sylop+subgroup. But theit/ normalizesP
and Lemm&5]7 implies thdf C P. O

COROLLARY 5.8. A Sylowp-subgroup is normal if and only if it is the only Sylgw
subgroup.

PROOF. Let P be a Sylowp-subgroup ofG. If P is normal, then (a) of Sylow Il implies
that it is the only Sylowp-subgroup. The converse statement follows frpm (3.12c) (which
shows, in fact, thaP is even characteristic). m

COROLLARY 5.9. Suppose that a grou@# has only one Sylow-subgroup for each|(G :
1). ThenG is a direct product of its Sylow-subgroups.

PROOF. Let Py,..., P, be the Sylow subgroups af, and let(P;, : 1) = p;". Thep;
are distinct primes. Becaudgg and P, are normal,P; P, is a normal subgroup aff. As
PN P, =1, (3.6) implies that

(a,b) — ab: Py X Py — PP,
is an isomorphism. In particulaP; P, has ordep]'py*. Now P, P, N P; = 1, and so
Py x Py x P3 = PP, Ps,
which has ordep]'py*ps®. Continue in this manner. (Alternatively, apply Exercise 15.)

ExXAMPLE 5.10. There is a geometric description of the Sylow subgroups-6fGL,,(F,,).
Let V' = F}, regarded as a vector space of dimensicoverF,. A full flag F'in V' is a
sequence of subspaces

V=V,DoV,1D---DV;D---DV; D{0}

with dim V; = i. Given such a flag”, let U(F") be the set of linear maps: V' — V such
that

@) a(V;) c V; for all i, and

(b) the endomorphism df;/V;_; induced byu is the identity map.

| claim that U(F') is a Sylow p-subgroup ofGG. Indeed, we can construct a basis
{e1,...,e,} for V such{e;} is basis forV;, {ei, e;} is a basis fofl;, and so on. Rel-
ative to this basis, the matrices of the elementé/¢f") are exactly the elements of the
groupU of (5.3).

Leta € GL,(F). ThenaF =4 {aV,,aV,_4,...} is again a full flag, and/ (aF) =
a-U(F)-a~'. From (a) of Sylow I, we see that the Sylgwsubgroups ot are precisely
the groups of the fornd/(F) for some full flagF'. (In fact, conversely, these ideas can be
used to prove the Sylow theorems — see Exercise 70 for Sylow 1.)
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Applications

We apply what we have learnt to obtain information about groups of various orders.

EXAMPLE 5.11 (GROUPS OF ORDER99). Let(G have order 99. The Sylow theorems
imply thatG has at least one subgroupof order11, and in facts;; \% ands;; = 1 mod
11. It follows thats;; = 1, andH is normal. Similarly,se|11 andsg = 1 mod 3, and so
the Sylow3-subgroup is also normal. Hen€géis isomorphic to the direct product of its
Sylow subgroupg (5]9), which are both commutative (4.17), ar@ sommutative.

Here is an alternative proof. Verify as before that the SylawsubgroupN of G
is normal. The Sylows-subgroup maps bijectively ontaz/N, and soG = N x Q.
It remains to determine the action by conjugationtbbn N. But Aut(N) is cyclic of
order10 (se€ 3.1ID), and so the only homomorphi§m— Aut(N) is the trivial one (the
homomorphism that maps everythingl{o It follows thatG is the direct product oiV and

Q.

EXAMPLE 5.12 (GROUPS OF ORDERyq, p, ¢ PRIMES, p < ¢). LetG be such a group, and
let P and(@ be Sylowp andq subgroups. The(G : Q) = p, which is the smallest prime
dividing (G : 1), and so (see Exercise 2@)is normal. Becaus& maps bijectively onto
G/Q, we have that

G=QxP,

and it remains to determine the actionfobn ) by conjugation.
The groupAut(Q) is cyclic of orderg — 1 (se€ 3.1D), and so, unleglg — 1, G = Q x P.
If plg — 1, thenAut(Q) (being cyclic) has a unique subgroé of orderp. In fact P’
consists of the maps
v, {i€Z/qZ | =1}.

Let « andb be generators foP and( respectively, and suppose that the actiom oh ()
by conjugation isc — %, iq # 1 (in Z/qZ). ThenG has generators, b and relations:”,
b, aba~! = b, Choosing a differen, amounts to choosing a different generatdor P,
and so gives an isomorphic groap
In summary: ifp 1 ¢ — 1, then the only group of ordefq is the cyclic groupC,,; if
plg — 1, then there is also a nonabelian group given by the above generators and relations.

EXAMPLE 5.13 (GROUPS OF ORDER30). LetG be a group of orde30. Then

s3 =1,4,7,10,... and dividesl0;
s5 =1,6,11,... and divides.

Hences; = 1 or 10, ands; = 1 or 6. In fact, at least one i, for otherwise there would be
20 elements of orde? and24 elements of ordes, which is impossible. Therefore, a Sylow
3-subgroupP or a Sylow5-subgroup is normal, and sdd = P() is a subgroup of-.
Because3 doesn't divideb — 1 = 4, (5.12) shows thatl is commutative H ~ C3 x Cs.
Hence

G = (03 X C5> Ao 027
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and it remains to determine the possible homomorph8ms, — Aut(C;5 x C5). But
such a homomorphisrfi is determined by the image of the nonidentity elementCgf
which must be an element of ord&rLeta, b, c generate’s, Cs, C5. Then

Aut(Cs x C5) = Aut(C3) x Aut(Cs),

and the only elements &fut C; andAut C5 of order2 area — a~! andb — b~1. Thus
there are exactly homomorphismg, andd(c) is one of the following elements:

ara ara a— a? ar— a
b—b b— bt br—b b— bt
The groups corresponding to these homomorphisms have centres o@rd€generated
by a), 5 (generated by), and1 respectively, and hence are nonisomorphic. We have shown

that (up to isomorphism) there are exactlgroups of ordeB0. For example, the third on
our list has generatois b, ¢ and relations

a, b, &Z, ab=ba, cact=a""', cbct =b.

EXAMPLE 5.14 (GROUPS OF ORDERI2). Let GG be a group of ordet2, and letP be its
Sylow 3-subgroup. IfP is not normal, the® doesn’t contain a nontrivial normal subgroup
of G, and so the may (4.2, action on the left cosets)

¢:G— Sym(G/P) ~ S,

is injective, and its image is a subgroup®f of order12. From Sylow Il we see thatf
has exactlylt Sylow 3-subgroups, and hence it has exa&lglements of ordes. But all
elements ofS, of order3 are in A, (see the table i8), and $0G) intersects4, in a
subgroup with at least elements. By Lagrange’s theoremiG) = A4, and soG ~ A,.

Now assume thaP is normal. TherG = P x Q where( is the Sylow4-subgroup. If
@ is cyclic of order4, then there is a unique nontrivial may= C4) — Aut(P)(= Cy),
and hence we obtain a single noncommutative gr@ypx Cy. If Q = Cy x Cy, there are
exactly3 nontrivial homomorphism: Q — Aut(P), but the three groups resulting are all
isomorphic taS; x Cy with Cy; = Ker 6. (The homomorphisms differ by an automorphism
of ), and so we can also apply Lemma 3.18.)

In total, there ar@ noncommutative groups of ordé2 and2 commutative groups.

ExXAMPLE 5.15 (GROUPS OF ORDERp?). Let G be a group of ordep?, with p an odd
prime, and assumé&' is not commutative. We know fronj (4]16) that has a normal
subgroupV of orderp?.

If every element of> has ordep (exceptl), thenN ~ C, x C,, and there is a subgroup
@ of G of orderp such that)y N N = {1}. Hence

G:NNQQ

for some homomorphisit: Q — N. The order ofAut(N) ~ GLy(F,) is (p* —1)(p* —p)
(se€[5.B), and so its Sylop+subgroups have order By the Sylow theorems, they are
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conjugate, and so Lemna 3]19 shows that there is exactly one nonabelian group in this
case.

Supposé€~ has elements of orde?, and letN be the subgroup generated by such an
elementz. BecauséG : N) = pis the smallest (in fact only) prime dividing~ : 1), N is
normal inG (Exercise 22). We next show th@tcontains an element of ordgemot in V.

We know Z(G) # 1, and, becausé’ isn’t commutative, thatz/Z(G) is not cyclic
(4.18). TherefordZ(G) : 1) = p andG/Z(G) ~ C, x C,. In particular, we see that for
all z € G, 2? € Z(G). Because&7/Z(G) is commutative, the commutator of any pair of
elements of~ lies in Z(G), and an easy induction argument shows that

n(n—1)

(xy)" = 2"y [y, x] "z, n>1.

Therefore(zy)? = 2Py?, and sox — aP: G — G is a homomorphism. Its image is
contained inZ(G), and so its kernel has order at le@$t Since N contains onlyp — 1
elements of ordep, we see that there exists an elemieaf orderp outsideN. HenceG =
(a) x (b) =~ Cj2 x Cp, and it remains to observie (3|19) that the nontrivial homomorphisms
Cp, — Aut(Cy2) = C, x C,_1 give isomorphic groups.

Thus, up to isomorphism, the only noncommutative groups of grtlare those con-

structed in|(3.16e).

EXAMPLE 5.16 (GROUPS OF ORDERZp™, 4p™, AND 8p™, p ODD). Let G be a group of
order2™p™, 1 < m < 3, pan odd prime]l < n. We shall show thatz is not simple. LetP
be a Sylowp-subgroup and lelv = N (P), so thats, = (G : N).

From Sylow I, we know that,[2™, s, = 1,p+1,2p+1,.... If 5, = 1, P is normal.

If not, there are two cases to consider:
(i) s, =4andp =3, or
(i) s, =8andp=7.

In the first case, the action by conjugation @fon the set of SyIOV\B-subgrou@
defines a homomorphisi&@ — S,, which, if G is simple, must be injective. Therefore
(G : 1)|4!, and son = 1; we have(G : 1) = 2™3. Now the Sylow2-subgroup has inde,
and so we have a homomorphigim— Ss. Its kernel is a nontrivial normal subgroupGf

In the second case, the same argument showshat )|8!, and son = 1 again. Thus
(G : 1) = 56 ands; = 8. ThereforeG has48 elements of ordeT, and so there can be only
one Sylow2-subgroup, which must therefore be normal.

Note that groups of orderq”, p, ¢ primes,p < ¢ are not simple, because Exercise 22
shows that the Sylow-subgroup is normal. An examination of cases now reveals4hat
is the smallest noncyclic simple group.

EXAMPLE 5.17. LetG be a simple group of ord&0. We shall show that: is isomorphic
to As.

Note that, becaus€&' is simple,s, = 3,5, or 15. If P is a Sylow2-subgroup and
N = Ng(P), thensy = (G : N).

The cases; = 3 is impossible, because the kernel@f— Sym(G/N) would be a
nontrivial subgroup of-.

15Equivalently, the usual ma@ — Sym(G/N).
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In the cases, = 5, we get an inclusiolt — Sym(G/N) = Ss, which realizes7 as a
subgroup of index in S;, but we saw in[(4.33) that, for > 5, A, is the only subgroup of
index2in S,,.

In the case, = 15, a counting argument (using that= 6) shows that there exist two
Sylow 2-subgroups” and@ intersecting in a group of order The normalizetV of PN Q
containsP and@, and so has ordér, 20, or 60. In the first case, the above argument show
thatG =~ As, and the remaining cases contradict the simplicitg-of
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6 Normal Series; Solvable and Nilpotent Groups

Normal Series.

Let G be a group. Anormal series(bettersubnormal seriesin G is a finite chain of
subgroups
G=Gy>G >-->GD>G > >G,={1}

Thus G, is normal inG;, but not necessarily idiz. The series is said to be without
repetitions ifG; # G;,,. Thenn is called thelength of the series. The quotient groups
G,;/G;,, are called thguotient(or factor) groupsof the series.

A normal series is said to be @mposition seriesf it has no repetitions and can'’t
be refined, i.e., ifG,;,; is a maximal proper normal subgroup @ for each:. Thus a
normal series is a composition series if and only if each quotient group is simpkg and
Obviously, every finite group has a composition series (usually many): cli@pse be
a maximal proper normal subgroup @f then choosé&+; to be a maximal proper normal
subgroup of71, etc.. An infinite group may or may not have a finite composition series.

Note that from a normal series

G=Gy>G >-->GD>G>-->G,D{l}
we obtain a sequence of exact sequences
11— Gn - Gn—l - Gn/Gn—l — 1

I — Gn—l - Gn—2 - Gn—Q/Gn—l —1

1—>G1—>G0—>G0/G1—>1.

Thusd is built up out of the quotient&' /G, G1/Gs, . .., G, by forming successive ex-
tensions. In particular, since every finite group has a composition series, it can be regarded
as being built up out of simple groups. The Jordailedr theorem, which is the main topic
of this subsection, says that these simple groups are independent of the composition series
(up to order and isomorphism).

Note that ifG has a normal serie§ = Gy > G, > --- > G, D {1}, then

(G : 1) = H(Gi,1 : Gz) = H(szl/Gl : 1)
EXAMPLE 6.1. (a) The symmetric grouf; has a composition series
Sg > Ag > 1

with quotientsCs, Cs.
(b) The symmetric group, has a composition series

S4 > A4 >V > <(13)(24)> > 1,
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whereV ~ C, x C, consists of all elements of ord2iin A, (seq 4.2B). The quotients are
02, 03, CQ, 02.
(c) Any full flag in F?, p a prime, is a composition series. Its lengthnisand its
quotients are”,,, C,, . .., C,.
(d) Consider the cyclic group’,,. For any factorizationn = p;---p, of m into a
product of primes (not necessarily distinct), there is a composition series
Cpn > Cn > Cm >

P1 P1P2

| I
<U> <UP1> <O-p1p2>

The length is-, and the quotients ax@,,, C,,, ..., C,,.
(e) Supposé- is a direct product of simple groups,= H; x --- x H,. ThenG has a
composition series

G> Hyx---xH.,>Hyx---xH, > -

of lengthr and with quotients?,, H,, ..., H,. Note that for any permutatianof {1,2,...r},
there is another composition series with quotieitls;), H(2), . - ., Hx ().

(f) We saw in {4.3B) that fon. > 5, the only normal subgroups &f, areS,,, A,, {1},
and in [4.29) that4,, is simple. Hence5,, > A, > {1} is theonly composition series for
Sh.-

As we have seen, a finite group may have many composition series. The Jaitikn-H
theorem says that they all have the same length, and the same quotients (up to order and
isomorphism). More precisely:

THEOREM6.2 (ORDAN-HOLDER). If
G=G>G >-->Gy={1}

G:H0>H1>|>Ht:{1}

are two composition series far, thens = ¢ and there is a permutation of {1,2, ..., s}
such thaGZ/GH_l ~ Hﬂ’(z)/Hﬂ'(erl)

PrROOF. We use induction on the order 6f.

Case I:H, = (G;. In this case, we have two composition seriesfgy to which we can
apply the induction hypothesis.

Case ll: H; # G;. Because each af; and H; is normal inG, G1H; is a normal
subgroup of(z, and it properly contains bott¥; and H,. But they are maximal normal
subgroups of7, and soz; H; = . Therefore

G/Gl :GlHl/Glng/GlﬁHl (Se@).

Similarly G/H, = G1/G1 N Hy. HenceK, =4 G1 N H; is a maximal normal subgroup in
bothG, andH,, and
G/Glel/KQ, G/HlﬁGl/Kg

16Jordan showed that corresponding quotients had the same orderplted that they were isomorphic.
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Choose a composition series
Ko K3 - D> K,

We have the picture:

G1 > G2 > - D> GS
/ AN
G Ko > - > K,
AN /
H1 > H2 > - D Ht

On applying the induction hypothesis &, and H; and their composition series in the
diagram, we find that

QUOtient$G > G1 > G2 > - ) = {G/Gl,Gl/Gg,Gg/Gg, .. }
(GCr. G Ky, K| K3, .}

~ {H\/Ky,G/H, K»/Ks,...}
!

)

2

{G/Hy, Hi /K>, K2/ K3, .
{G/H,,H,/Hy, Hy/H3, .
= Quotient$G > H, > Hy 1> -+ ).

~Y
~J

In passing from the second to the third line, we used the isomorphisfes ~ H, /K>
andG/H1 /QJJG]_/KQ. O

Note that the theorem applied to a cyclic graulp implies that the factorization of an
integer into a product of primes is unique.

REMARK 6.3. There are infinite groups having finite composition series (there are even
infinite simple groups). For such a group,détz) be the minimum length of a composition
series. Then the Jordandlder theorem extends to show that all composition series have
lengthd(G) and have isomorphic quotient groups. The same proof works except that you
have to use induction af( G) instead of(G : 1) and verify that/{, has a finite composition
series.

The quotients of a composition series are also caltedposition factors.

Solvable groups

A normal series whose quotient groups are all commutative is calleolvable series
A group is solvable if it has a solvable series. Alternatively, we can say that a group is
solvable if it can be obtained by forming successive extensions of abelian groups. Since
a commutative group is simple if and only if it is cyclic of prime order, we see ¢that
solvable if and only if for one (hence every) composition series the quotients are all cyclic
groups of prime order.

Every commutative group is solvable, as is every dihedral group. The results in Section
5 show that every group of order 60 is solvable. By contrast, a noncommutative simple
group, e.g.A, for n > 5, will not be solvable.

There is the following result:
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THEOREM®6.4 (FEIT-THOMPSON). Every finite group of odd order is solvable.

PrROOF. The proof occupies an entire issue of the Pacific Journal of Mathematics (Feit,
Walter, and Thompson, John G., Solvability of groups of odd order. Pacific J. Math. 13
(1963), 775-1029). O

This theorem played a very important role in the development of group theory, because
it shows that every noncommutative finite simple group contains an element oforder
It was a starting point in the program that eventually led to the classification of all finite
simple groups. See the article cited ¢np34.

EXAMPLE 6.5. Consider the subgrougs = {( 3 : )} andU = {( é 15 )} of

GLy(k), some fieldk. ThenU is a normal subgroup aB, andB/U = k* x k*, U =
(k,4+). HenceB is solvable.

PROPOSITIONG.6. (a) Every subgroup and every quotient group of a solvable group is
solvable.
(b) An extension of solvable groups is solvable.

PROOF. (a) LetG > G > --- > G, be a solvable series fa¥, and letH be a subgroup
of G. The homomorphism

T — IGH—I cHN GZ — Gz'/Gi—H

has kernelH N G;) N G441 = H N Gy1. Therefore,H N G, is a normal subgroup of
H N G; and the quotient N G;/H N G4, injects intoG; /G4, which is commutative.
We have shown that

H>HNG >--->HNG,

is a solvable series faf .
Let G be a quotient group af, and letG; be the image of’; in G. Then

G>G > > G, ={1}

is a solvable series fdt. B
(b) Let N be a normal subgroup @f, and letG = G/N. We have to show that iV
and@ are solvable, then so alsods Let

GG > > G, ={1}

N> N >---> N, ={1}

be a solvab_le ieries far and NV, and letG,; be the inverse image af; in G. Then
Gi/Gi+1 ~ Gi/Gi+1 (Se), and so

GG D> >G(=N)> N >---> Ny

is a solvable series fadF. O]
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COROLLARY 6.7. A finite p-group is solvable.

PROOF. We use induction on the order the groGp According to|(4.15), the centtg(G)
of G is nontrivial, and so the induction hypothesis implies 4t/ (G) is solvable. Be-
causeZ((G) is commutative, (b) of the proposition shows tliais solvable. O]

Let G be a group. Recall that the commutatorof) € G is

[z, y] = zyz ™'y = zy(yx) ™!

Thus
[r,y] =1 <= zy = yx,

andG is commutative if and only if every commutator equals

EXAMPLE 6.8. For any finite-dimensional vector spdceover a fieldk and any full flag
F={V,,V,_1,...} inV, the group

B(F) = {a € Aut(V) | a(V;) C V; all 4}

is solvable. Indeed, It (F') be the group defined in Example 5.10. The(F)/U(F) is
commutative, and, wheh = F,, U(F) is ap-group. This proves thaB(F") is solvable
whenk = F,, and we leave the general case as an exercise.

For any homomorphism: G — H

o[z, y]) = plzyz~'y ™) = [p(z), ¢(y)],

i.e., o maps the commutator af, y to the commutator op(z), ¢(y). In particular, we see
that if H is commutative, thep maps all commutators iy to 1.

The groupG’ generated by the commutators Ghis called thecommutatoror first
derived subgroupf G.

PROPOSITION6.9. The commutator subgrou@’ is a characteristic subgroup dF; it is
the smallest normal subgroup 6fsuch thatG /G’ is commutative.

PROOF. An automorphisnu of G maps the generating set f@f into G, and hence maps
G’ into . Since this is true for all automorphisms@f G’ is characteristic (se¢ pp8).
Write g — g for the homomorphisng — ¢G’: G — G/G’. As for any homomor-
phism,[g, k] — [g, ], but, in this case, we knoly, h] — 1. Hence[g, h] = 1 for all g,
h € G/G', which shows tha/ /G’ is commutative.
Let V be a second normal subgroup@such thaty /N is commutative. Thefy, h] —

lin G/N,and sdg, h] € N. Since these elements generate N O G'. O

Forn > 5, A, is the smallest normal subgroup 8f giving a commutative quotient.
Hence(S,) = A,.

Thesecond derived subgrougf G is (G’)’; thethird is G® = (G”)'; and so on. Since
a characteristic subgroup of a characteristic subgroup is charactéristic (3.12a), each derived
groupG™ is a characteristic subgroup 6f Hence we obtain a normal series

GO>G>G? ...,
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which is called thalerived seriesFor example, when > 5, the derived series &, is
S, DA, DA, DA, D .

PROPOSITIONG.10. A groupd is solvable if and only if itg™ derived subgrou:*) = 1
for somek.

PrROOF. If G¥) = 1, then the derived series is a solvable seriegfoConversely, let
G=G,>G>GD>--->GE =1

be a solvable series fak. Becauses /G, is commutativeG; O G'. Now G'Gs is a
subgroup of7;, and from

G'/G' NGy = G'Gy)Gy C G1)Gy
we see that
G /G, commutative= G'/G' N G, commutative= G"” C G' NG, C Gy.

Continuing in the fashion, we find that®) c G, for all i, and hence& ) = 1. O

Thus, a solvable grou@’ has acanonicalsolvable series, namely the derived series, in
which all the groups are normal @. The proof of the proposition shows that the derived
series is the shortest solvable seriesdoits length is called theolvable lengthof G.

Nilpotent groups

Let G be a group. Recall that we writé(G) for the centre of5. Let Z*(G) > Z(G) be
the subgroup of7 corresponding t& (G/Z(G)). Thus

g€ Z*G) <= lg,7] € Z(G)forallz € G.
Continuing in this fashion, we get a sequence of subgroagsefiding central serigs
1} cZ(G)c Z*(G) C ---
where
g€ Z(G) < |g,2] € Z71(G) forall x € G.

If Z™(G) = G for somem, thend is said to benilpotent, and the smallest such is called
the (nilpotency) classof G. For example, all finite-groups are nilpotent (apply 4[15).

For example, only the groufl } has clas$), and the groups of clagsare exactly the
commutative groups. A grou is of class2 if and only if G/Z(G) is commutative —
such a group is said to beetabelian
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EXAMPLE 6.11. (a) A nilpotent group is obviously solvable, but the converse is false. For
example, for a field:, let

2160

ThenZ(B) = {al | a # 0}, and the centre aB/Z(B) is trivial. ThereforeB/Z(B) is not
nilpotent, but we saw irj (6]5) that it is solvable.

(b) The groupG = {(é :1; %)} is metabelian: its centre »%(é g §) } andG/Z(G) is
commutative.

(c) Any nonabelian groug: of orderp? is metabelian. In fact;’ = Z(G) has order
p (se€ 5.1p), and:/G’ is commutative[(4.17). In particular, the quaternion and dihedral
groups of ordeB, () and D,, are metabelian. The dihedral grolj- is nilpotent of class
n — this can be proved by induction, using tHatD.-) has ordeR, and Dyn /Z(Dgn) =~
Dyn-1. If nis not a power o, thenD,, is not nilpotent (use Theorelm 6]17 below).

a,b,cek, ac#O}.

PROPOSITION6.12. (a) A subgroup of a nilpotent group is nilpotent.
(b) A quotient of a nilpotent group is nilpotent.

PROOF. (a) Let H be a subgroup of a nilpotent grodp Clearly, Z(H) D Z(G) N H.
Assume (inductively) thaZ’(H) > Z*(G) N H; thenZ™(H) > Z*(G) N H, because
(forh € H)

heZ*G) = [ha e Z(G)alzeG=[ha]eZ(H)alze H
(b) Straightforward. =

REMARK 6.13. It is worth noting that i/ is a subgroup of7, thenZ(H) may be bigger
thanZ(G). For example

=46 0)

is commutative, i.eZ(H) = H, but the centre ofs consists of only of the scalar matrices.

m%o}ceuwy

PROPOSITIONG.14. A group( is nilpotent of class< m if and only if

[' . {[91792]793]7' s 7gm+1] =1
forall g, ..., gmi1 € G.

PROOF. Recall,g € Z/(G) < [g,x] € Z7(G)forallz € G.
Assume( is nilpotent of class< m; then
G = Zm(G) = [gl,gg] c Zm_l(G) all g1,092 € G
= [[g1, 92), 93] € Z"7*(G) all g1, g2, 95 € G

= [ o [[glvgﬂvg?)]a 7gm} € Z(G) a”.glv o 9m € G
= ["‘[[91792}793]w--7gm+1} =1 a”glaw'ugm ed.
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For the converse, let, € GG. Then

["'[[91792]7g3]7 -~-,gm]7gm+1] =1 for all 915,925 -+, Gm+1 € G
= ["'[[gla92]793]a agm] € Z(G)v for a" g1y -5 9m € G
= [..[lg1, 92), 93], -, Gm_1] € Z*(G), forall gy, ..., gm1 € G

= g1 € Zm(G) all g; € G.

An extension of nilpotent groups need not be nilpotent, i.e.,
N andG/N nilpotent = G nilpotent. 4)

For example, the subgrodp of the groupB in Example$ 6J5 and 6.1 is commutative and
B/U is commutative, buB is not nilpotent.

However, the implicatior] (4) holds whe¥ is contained in the centre 6f. In fact, we
have the following more precise result.

COROLLARY 6.15. For any subgroupV of the centre of~,
G/N nilpotent of classn = G nilpotent of class< m + 1.
PrRoOOF. Write 7 for the mapG — G/N. Then
T([-[l91, 92], 93], -+, gmls Gmn]) = [ [lmg1, wgol, wgs), oo WG], TG ] = 1

all g1, ..., gmi1 € G. Hencel...[[g91, 92], 93], -y Gml, gms1) € N C Z(G), and so

["'[[91792]793]7 "'7gm+1]agm+2] =1lall g1, Gmy2 € G.

COROLLARY 6.16. A finite p-group is nilpotent.

PROOF. We use induction on the order ¢f. BecauseZ(G) # 1, G/Z(G) nilpotent,
which implies thatG is nilpotent. O

Recall that an extension
1-N5SGS Q—1

is central if (N) C Z(G). Then:

the nilpotent groups are those that can be obtained from commutative groups
by successive central extensions.

Contrast:

the solvable groups are those that can be obtained from commutative groups
by successive extensions (not necessarily central).
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THEOREM 6.17. A finite group is nilpotent if and only if it is equal to a direct product of
its Sylow subgroups.

PROOF. A direct product of nilpotent groups is (obviously) nilpotent, and so the “if” di-
rection follows from the preceding corollary. For the converse(ldte a finite nilpotent
group. According to[(5]9) it suffices to prove that all Sylow subgroups are normal. Let
P be such a subgroup @f, and letN = Ng(P). The first lemma below shows that
N¢(N) = N, and the second then implies thét= G, i.e., thatP is normal inG. O

LEMMA 6.18. Let P be a Sylow-subgroup of a finite group’. For any subgroupd of G
containingN¢(P), we haveNg(H) = H.

PROOF. Letg € Ng(H), sothatyHg™! = H. ThenH > gPg~' = P’, which is a Sylow
p-subgroup offi. By Sylow Il, hP'h~! = P for someh € H, and sohgPg *h~! C P.
Hencehg € Ng(P) C H,and sqog € H. O

LEMMA 6.19. Let H be proper subgroup of a finite nilpotent grotf) then H # Ng(H).

PROOF. The statement is obviously true for commutative groups, and so we can assume
G to be noncommutative. We use induction on the ordefzofBecause&~ is nilpotent,

Z(G) # 1. Certainly the elements df (G) normalizeH, and so ifZ(G) ¢ H, we have

H S Z(G)-H C Ng(H). Thus we may supposé(G) C H. Then the normalizer off

in G corresponds undefr (3.3) to the normalizefdfZ(G) in G/Z(G), and we can apply

the induction hypothesis. O

REMARK 6.20. For a finite abelian groug we recover the fact that is a direct product
of its p-primary subgroups.

PROPOSITIONG6.21 (FRRATTINI’S ARGUMENT). Let H be a normal subgroup of a finite
group@, and letP be a Sylow-subgroup off/. ThenG = H - Ng(P).

PROOF. Letg € G. ThengPg~! C gHg ' = H, and bothgPg~! and P are Sylow
p-subgroups off. According to Sylow Il, there is ah € H such thaiyPg~* = hPh~!,
and it follows thath'g € Ng(P) and sog € H - Ng(P). O

THEOREM 6.22. A finite group is nilpotent if and only if every maximal proper subgroup
is normal.

PROOF. We saw in Lemm@ 6.19 that for any proper subgréiipf a nilpotent groug=,
H & Ng(H). Hence,
H maximal= N¢(H) = G,

i.e., H is normal inG.

Conversely, suppose every maximal proper subgrou@ of normal. We shall check
the condition of Theorein 6.1.7. Thus, Bte a Sylowp-subgroup of7. If P is not normal
in G, then there exists a maximal proper subgrdiipof G containing N (P). Being
maximal, H is normal, and so Frattini’s argument shows that= H - No(P) = H —
contradiction. O
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Groups with operators

Recall that the seAut(G) of automorphisms of a grouf is again a group. Le#l be a
group. A pair(G, ¢) consisting of a groug: together with a homomorphism: A —
Aut(G) is called anA-group, or G is said to haved as agroup of operators

Let G be anA-group, and write'z for p(a)z. Then

(@) @Dz =(fy) (¢ is a homomorphism);
(b) *(zy) =“x -y (¢(«) is @ homomorphism);
) lz=2 (¢ is @ homomorphism).

Conversely, a mapa,z) — “x : A x G — G satisfying (a), (b), (c) arises from a
homomorphism4d — Aut(G). Conditions (a) and (c) show that — “x is inverse to
z — @z and sar — “z is a bijectionG — G. Condition (b) then shows that it is an
automorphism of7. Finally, (a) shows that the mag(«) = (x — “z) is a homomorphism
A — Aut(G).

Let G be a group with operators$. A subgroupH of G is admissibleor an A-invariant
subgroupif

reH="2cecH,alac A

An intersection of admissible groups is admissible. Hlfis admissible, so also are its
normalizerN¢(H) and centralize€q(H).

An A-homomorphism(or admissible homomorphisinof A-groups is a homomor-
phism~: G — G’ such thaty(“g) = *y(g) foralla € A, g € G.

ExXAMPLE 6.23. (a) A grouz can be regarded as a group Wjth} as group of operators.
In this case all subgroups and homomorphisms are admissible, and so the theory of groups
with operators includes the theory of groups without operators.

(b) ConsiderGG with GG acting by conjugation, i.e., considértogether with

g i, G — Aut(G).

In this case, the admissible subgroups are the normal subgroups.

(c) ConsiderG with A = Aut(G) as group of operators. In this case, the admissible
subgroups are the characteristic subgroups.

Almost everything we have proved in this course for groups also holds for groups with
operators. In particular, the Isomorphism Theorémj[3.1, 3.2, ahd 3.3 hold for groups with
operators. In each case, the proof is the same as before except that admissibility must be
checked.

THEOREM 6.24. For any admissible homomorphist G — G’ of A-groups, N a
Ker(y) is an admissible normal subgroup 6f, v(G) is an admissible subgroup @,
and~ factors in a natural way into the composite of an admissible surjection, an admissi-
ble isomorphism, and an admissible injection:

G — G/N S ~(G) — .

THEOREM 6.25. Let G be a group with operators!, and let H and N be admissible
subgroups withV normal. ThenH N N is normal admissible subgroup &f, HN is an
admissible subgroup a@F, andh(H N N) — hH is an admissible isomorphisii/H N
N — HN/N.
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THEOREM 6.26. Let p: G — G be a surjective admissible homomorphismAsfiroups.
Under the one-to-one correspondenide— H between the set of subgroups(dtontain-
ing Ker () and the set of subgroups 6f (se), admissible subgroups correspond to
admissible subgroups.

Letp: A — Aut(G) be a group withA operating. Anadmissible normal seriets a
chain of admissible subgroups Gf

GOG DGy D DG,

with eachG; normal inG;_,. Define similarly an admissible composition series. The

guotients of an admissible normal series drgroups, and the quotients of an admissible

composition series are simpke-groups, i.e., they have no normal admissible subgroups
apart from the obvious two.

The Jordan-flder theorem continues to hold fer-groups. In this case the isomor-
phisms between the corresponding quotients of two composition series are admissible. The
proof is the same as that of the original theorem, because it uses only the isomorphism
theorems, which we have noted also hold fegroups.

EXAMPLE 6.27. (a) Conside’ with G acting by conjugation. In this case an admissible
normal series is a sequence of subgroups

G=Gy DG DGy D DG, ={1},

with eachG; normal inG. (This is whatshouldbe called a normal series.) The action of
G on G; by conjugation passes to the quotient, to give an actiof oh G;/G;,,. The
guotients of two admissible normal series are isomorphiG-gsoups.
(b) ConsideiG with A = Aut(G) as operator group. In this case, an admissible normal
series is a sequence
G=GyDG DGy D DG, ={1}

with eachG; a characteristic subgroup 6f.

Krull-Schmidt theorem

A group G is indecomposablé G # 1 andG is not isomorphic to a direct product of two
nontrivial groups, i.e., if

G~HxH =H=1o0orH =1.

EXAMPLE 6.28. (a) A simple group is indecomposable, but an indecomposable group need
not be simple: it may have a normal subgroup. For exanffjles indecomposable but has
(5 as a normal subgroup.

(b) A finite commutative group is indecomposable if and only if it is cyclic of prime-
power order.

Of course, this is obvious from the classification, but it is not difficult to prove it directly.
Let G be cyclic of orderp™, and suppose that ~ H x H'. ThenH and H' must bep-
groups, and they can't both be killed by, m < n. It follows that one must be cyclic
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of orderp™, and that the other is trivial. Conversely, suppose thas commutative and
indecomposable. Since every finite commutative group is (obviously) a direct product of
p-groups withp running over the primes; is ap-group. Ifg is an element ofy of highest
order, one shows thdy) is a direct factor of7, G ~ (g) x H, which is a contradiction.

(c) Every finite group can be written as a direct product of indecomposable groups
(obviously).

Recall [3.8) that whett,, G, . . ., G, are subgroups af such that the map

<917927'~-7gr) '_>9192"'gr:G1 X GQ X oo XGTHG

is an isomorphism, we say th@tis the direct product of its subgroups, . .., G,, and we
write
G:G1XG2X~'-XGT.

THEOREM6.29 (KRULL-SCHMIDT). Let
G=G x---xGg and G=H; x---x H,

be two decompositions 6finto direct products of indecomposable subgroups. Thery,
and there is a re-indexing such thé&t;, ~ H,. Moreover, given-, we can arrange the
numbering so that

G=Gy x--xG.xH. 1 X+ x H,.

PrROOF. See Rotman 1995, 6.36. O]

ExAmMPLE 6.30. LetG = F, x [F,,, and think of it as a two-dimensional vector space over
F,. Let

Gy =((1,0), G2=((0,1)); Hy=((1,1)), Hy=((1,-1)).
ThenG = G, x Gy, G = H, x Hy, G = Gy x Hs.

REMARK 6.31. (a) The Krull-Schmidt theorem holds also for an infinite group provided it
satisfies both chain conditions on subgroups, i.e., ascending and descending sequences of
subgroups ofs become stationary.

(b) The Krull-Schmidt theorem also holds for groups with operators. For example,
let Aut(G) operate or7; then the subgroups in the statement of the theorem will all be
characteristic.

(c) When applied to a finite abelian group, the theorem shows that the giGups a
decompositiorG = C,,,, x ... x C,,, with eachm; a prime power are uniquely determined
up to isomorphism (and ordering).

Further reading

For more on abstract groups, see Rotman 1995.

For an introduction to the theory of algebraic groups, see: Curtis, Morton L., Matrix
groups. Second edition. Universitext. Springer-Verlag, New York, 1984.

For the representation theory of groups, see: Serre, Jean-Pierre, Linear Representations
of Finite Groups. Graduate Texts in Mathematics: Vol 42, Springer, 1987.
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A Solutions to Exercises

These solutions fall somewhere between hints and complete solutions. Students were ex-
pected to write out complete solutions

1. By inspection, the only element of ordeis ¢ = a? = b%. Sincegcg! also has orde?,
it must equat, i.e.,gcg~! = cforall g € Q. Thusc commutes with all elements ¢f, and
{1, ¢} is a normal subgroup d@f. The remaining subgroups have ordeérg, or 8, and are

automatically normal (sée 1]24a).

11 1 1\" 1 n
2.Theelemenhb_<o 1),and(0 1> _<O 1).

3. Consider the subsefg, g~ '} of G. Each set has exactyelements unlesghas ordei
or 2, in which case it ha$ element. Sincé& is a disjoint union of these sets, there must be
a (nonzero) even number of sets witkelement, and hence at least one element of atder

4. Because the grou@ /N has orden, (¢N)* = 1 for everyg € G (Lagrange’s theorem).
But (¢N)" = ¢g"N, and sogg™ € N. For the second statement, considér= {1, 7} C Ds.
It has index3, but the elemento has order, and so(70)® = 70 ¢ N.

5. Note first that any group generated by a commuting set of elements must be commu-
tative, and so the grou@ in the problem is commutative. According {o (2.9), any map

{ai,...,a,} — A with A commutative extends uniquely to homomorphiém- A, and
so G has the universal property that characterizes the free abelian group on the generators
a;.

6. (a) Ifa # b, thentheword: - - - ab~! - - - b~ ! is reduced anet 1. Therefore, ifi"v" = 1,
thena = b. (b) is similar. (c) The reduced form af', = # 1, has length at least.

7. (a) Universality. (b)C,, x C, is commutative, and the only commutative free groups
arel andCy. (c) Suppose is a nonempty reduced wordin, . .., x,, saya = x; - - - (Or
z;'---). Forj # i, the reduced form ofir;,a] =4 z;az; 'a™' can’'t be empty, and so
andz; don't commute.

8. The unique element of orderis ?. The quotient groug),,/(b*) has generatorsandb,
and relations®" ™ = 1,b* = 1, bab~' = ™', which is a presentation fdp,. - (seq 2.1).

9. (a) A comparison of the presentatidn = (o?, 72, 7070 = 1) with that for G suggests
puttingo = ab andr = a. Check (using 2]9) that there are homomorphisms:

Dy— G, ow—ab, T—a, G—D, a—T, b—71l0
The composite9, — G — Dy andG — D, — G are the both the identity map on
generating elements, and therefgre|(2.9 again) are identity maps. (b) Omit.

10. The hint givesab®a=! = bc*b~!. Butb® = 1. Soc® = 1. Sincec* = 1, this forces
¢ = 1. Fromacac™! = 1 this givesa? = 1. Buta® = 1. Soa = 1. The final relation then
givesh = 1.

11. The elements?, xy, y? lie in the kernel, and it is easy to see thaty|+?, zy, y?) has
order (at most®, and so they must generate the kernel (at least as a normal group — the
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problem is unclear). One can prove directly that these elements are free, or else apply the
Nielsen-Schreier theorern (2.6). Note that the formula ¢np. 18 (correctly) predicts that the
kernelisfreeofranR -2 —2+1=3

12. We have to show that if andt are elements of a finite group satisfyitig s3 = s°,
then the given elementis equal tol. So,s™ = 1 for somen. The interesting case is when
(3,n) = 1. Butin this cases®” = s for somer. Hencet st = (¢~ 's3¢)" = s°". Now,

g=sttsTH)s(t T st) = 5558 = 1

done. [In such a question, look for a pattern. | also took a while to see it, but what eventually
clicked was thay had two conjugates in it, as did the relation fer So | tried to relate
them.]

13. The key point is thata) = (a?) x (a"). Apply (3.5) to see thab,, breaks up as a
product.

14. Let N be the unique subgroup of ord2in G. ThenG/N has orded, but there is no
subgroup C G of order4 with @ N N = 1 (because every group of ordércontains a
group of order), and soG # N x @ for any@. A similar argument applies to subgroups
N of order4.

15. For anyg € G, gMg~! is a subgroup of ordemn, and therefore equals/. Thus M
(similarly N) is normal inG, and M N is a subgroup of;. The order of any element of
M N N dividesged(m,n) = 1, and so equals. Now (3.6) shows thad/ x N ~ MN,
which therefore has ordenn, and so equal&'.

16. Show thatGL,(FF,) permutes th& nonzero vectors ifi3 (2-dimensional vector space
overFy,).

17. Omit. [If anyone has a neat solution, please send it to me.]

18. The pair
100 a00
v ={(41)} ande = {(351)]
satisfies the conditions (i), (i), (i) of (3.13). For example, for (i) (Maple says that)

t 1
1) (400 ) - (32
a Cc C a c = _c L
00d/ \o0o1/\oo0d 01 d+d(+ac)

00 1

It is not a direct product of the two groups because it is not commutative.

19. Let g generateC,,. Then the only other generator js*, and the only nontrivial
automorphism ig — ¢~'. HenceAut(Cy,) = {#+1}. The homomorphisns; — Aut(Ss)
is injective becaus& (S;) = 1, butS; has exacthy3 elementsuy, as, az of order2 and2
elements, b? of order3. The elements,, b generateSs, and there are onl§ possibilities
for a(ay), a(b), and saS; — Aut(Ss) is also onto.

20. Let H be a proper subgroup ¢, and letN = Ng(H). The number of conjugates of
His(G: N) < (G : H) (sed 4.B). Since each conjugaterdthas(H : 1) elements and
the conjugates overlap (at least){in}, we see that

#|JgHg ' < (G:H)(H:1)=(G:1).
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For the second part, chooSedo be a set of representatives for the conjugacy classes.

21. According td 4.15, 4.17, there is a normal subgrdupf orderp?, which is commuta-
tive. Now show thati has an elementof orderp not in NV, and deduce that = N x (c),
etc..

22. Let H be a subgroup of index, and letN be the kernel of? — Sym(G/H) —itis
the largest normal subgroup 6f contained in7 (seq 4.2D). IfV # H, then(H : N) is
divisible by a primeg > p, and(G : N) is divisible bypq. But pg doesn't dividep! —
contradiction.

23. Embed( into Sy, and letN = A, N G. ThenG/N — S,/ Az, = Cs, and so
(G : N) < 2. Leta be an element of ord&x in GG, and letby, ..., b, be a set of right
coset representatives fai) in G, so thatG = {b,aby, ..., b,,ab,}. The image ot in
Sam IS the product of then transposition$b,, ab, ), . . ., (by,, ab,, ), and sincen is odd, this
implies thata ¢ N.

24. (a) The number of possible first rowsds — 1; of second row2? — 2; of third rows

23 — 2%, whence(G : 1) =7 x 6 x 4 = 168.

(b) LetV = F3. Then#V = 23 = 8. Each line through the origin contains exactly one
point=£ origin, and So# X = 7.

(c) We make a list of possible characteristic and minimal polynomials:

Characteristic poly. Min’l poly. Size Order of elementin class
I X3+ X?+X+1 X+1 1 1
2 X3+ X2+X+1 (X+1)2 21 2
3 X+ X2+ X+1 (X+1) 42 4
4 XP41=(X+1(X?>+X+1) Same 56 3
5 X3+ X + 1 (irreducible) Same 24 7
6 X3+ X2+ 1 (irreducible) Same 24 7

Here size denotes the number of elements in the conjugacy class.

Case 5:Let o be an endomorphism with characteristic polynonial +~ X + 1. Check
from its minimal polynomial that” = 1, and soa has order7. Note thatV is a free
[Fy[a]-module of rank one, and so the centralizercoin G is Fo[a]) N G = («). Thus
#Cq(a) = 7, and the number of elements in the conjugacy clagsiefl68/7 = 24.
Case 6:Exactly the same as Case 5.

Case 4:HereV = V] @ V; as anfFs[a]-module, and

Endp, [a](V) = Endy, M(VO @ Endp, M(VQ)_

Deduce tha#C( () = 3, and so the number of conjugatescois 13 = 56.

Case 3:HereCq(a) = Fo[a] N G = («), which has ordet.

Case 1:Herea is the identity element.

Case 2:HereV =V, @& V; as anfF,|a]-module, wherey acts asl on V; and has minimal
polynomial X2 + 1 on V5. Either analyse, or simply note that this conjugacy class contains
all the remaining elements.
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(d) Sincel68 = 23 x 3 x 7, a proper nontrivial subgroufl of G will have order
2,4,8,3,6,12,24,7,14, 28,56, 21, 24, or 84.

If H is normal, it will be a disjoint union of 1} and some other conjugacy classes, and so
(N :1) =1+ > ¢ with ¢; equal to 21, 24, 42, or 56, but this doesn’t happen.

25. SinceG/Z(G) — Aut(G), we see that /Z(G) is cyclic, and so by[ (4.18) that is
commutative. IfG is finite and not cyclic, it has a factar,- x C,s etc..

26. Clearly (ij) = (17)(14)(17). Hence any subgroup containifitR), (13), ... contains
all transpositions, and we kno$, is generated by transpositions.

27. Note thatCy(z) N H = Cy(x), and soH /Cy(z) = H - Cg(x)/Cq(x)). Prove each
class has the same numlbasf elements. Then

4K = (G: Cg(x)) = (G : H-Ca(a))(H - Colz) : Colx)) = ke.

28. (a) The first equivalence follows from the preceding problem. For the second, note that
o commutes with all cycles in its decomposition, and so they must be even (i.e., have odd
length); if two cycles have the same odd lengtlone can find a product éftranspositions
which interchanges them, and commutes witltonversely, show that if the partition of
defined byo consists of distinct integers, thencommutes only with the group generated
by the cycles in its cycle decomposition.

(b) List of conjugacy classes ifi;, their size, parity, and (when the parity is even)
whether it splits inA;.

Cycle Size Parity Splits inl;? C; (o) contains
1 (1) 1 E N
2 (12) 21 O
3 (123) 70 E N (67)
4 (1234) 210 O
5 (12345) 504 E N (67)
6 (123456) 840 0]
7 (1234567) 720 E Y 720 doesn't divide 2520
8§  (12)(34) 105 E N (67)
9  (12)(345) 420 O
10 (12)(3456) 630 E N (12)
11 (12)(3456) 504 O
12 (123)(456) 280 FE N (14)(25)(36)
13 (123)(4567) 420 O
14 (12)(34)(56) 105 O
15 (12)(34)(567) 210 E N (12)

29. According to Maplen = 6, a — (13)(26)(45), b — (12)(34)(56).

30. SinceStab(gzy) = g Stab(zg)g™!, if H C Stab(z,) thenH C Stab(z) for all x, and
so H = 1, contrary to hypothesis. No#tab(z,) is maximal, and sd? - Stab(xz) = G,
which shows that{ acts transitively.
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B Review Problems

34. Prove that a finite grou@’ having just one maximal subgroup must be a cyglgroup,
p prime.

35. Let a andb be two elements of-¢. If a andb both have ordet46 andab = ba, what
are the possible orders of the produt?

37. Suppose that the group is generated by a séf.
(@) Show thatifgzg~! € X forall z € X, g € G, then the commutator subgroup Gf
is generated by the set of all elements:~'y~! for z,y € X.
(b) Show that ifz? = 1 for all z € X, then the subgroufy of G generated by the set of
all elementsey for z,y € X has indext or 2.

38. Suppose» > 3 and2p — 1 are both prime numbers (e.g.~ 3,7,19,31,...). Prove,
or disprove by example, that every group of orgé&p — 1) is commutative.

39. Let H be a subgroup of a group. Prove or disprove the following:
(a) If G isfinite andP is a Sylowp-subgroup, therl N P is a Sylowp-subgroup off .
(b) If G is finite, P is a Sylowp-subgroup, and O Ng(P),thenNg(H) = H.
(c) If gis an element ofs such thayHg~! C H, theng € Ng(H).

40. Prove that there is no simple group of orde6.

41. Letn andk be integersl < k£ < n. Let H be the subgroup of,, generated by the
cycle (a; . ..ax). Find the order of the centralizer éf in S,,. Then find the order of the
normalizer of in S,,. [The centralizerof H is the set ofy € G suchghg=' = h for all
h € H. Itis again a subgroup af.]

42. Prove or disprove the following statement:Hf is a subgroup of an infinite groug,
thenforallr € G,zHx ' C H = 2 'Hx C H.

43. Let H be a finite normal subgroup of a groap and letg be an element aff. Suppose
thatg has order and that the only element éf that commutes witly is 1. Show that:
(a) the mappind. — ¢g~'h~1gh is a bijection fromH to H;
(b) the cosey H consists of elements &f of ordern.

44. Show that if a permutation in a subgroGpof S,, mapsz to y, then the normalizers of
the stabilizerstab(x) andStab(y) of = andy have the same order.

45. Prove that if all Sylow subgroups of a finite groGpare normal and abelian, then the
group is abelian.

46. A group is generated by two elementandb satisfying the relationsi® = b2, a™ = 1,
b"™ = 1 wherem andn are positive integers. For what valuesefandn canG be infinite.

47. Show that the groug: generated by elementsandy with defining relations:? =
y® = (zy)* = 1is afinite solvable group, and find the order®and its successive derived
subgroupsy’, G”, G"".

48. A group( is generated by a normal s&tof elements of orde2. Show that the com-
mutator subgrou’ of G is generated by all squares of produeisof pairs of elements
of X.
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49. Determine the normalize¥ in GL,,(F") of the subgrougd of diagonal matrices, and
prove thatV/H is isomorphic to the symmetric grou,.

50. Let G be a group with generatossandy and defining relations?, v°, (zy)*. What is
the index inG of the commutator groug”’ of G.

51. Let GG be a finite group, and/ the subgroup generated by the elements of odd order.
Show thatH is normal, and that the order 6f/ H is a power of.

52. Let GG be a finite group, an@® a Sylowp-subgroup. Show that iff is a subgroup of7
such thatVe(P) C H C G, then

(a) the normalizer off in G is H;

(b) (G: H) =1 (modp).

53. Let G be a group of ordes3 - 25. Show that’ is solvable. (Hint: A first step is to find
a normal subgroup of ordéd using the Sylow theorems.)

54. Suppose that is an endomorphism of the grodpthat maps~ ontoG and commutes
with all inner automorphisms af. Show that ifG is its own commutator subgroup, then
ax =z forall x in G.

55. Let GG be a finite group with generatossand¢ each of ordeR. Letn = (G : 1)/2.
(&) Show thati has a cyclic subgroup of order Now assume: odd.
(b) Describe all conjugacy classes®f
(c) Describe all subgroups ¢f of the formC'(z) = {y € Glzy = ya}, z € G.
(d) Describe all cyclic subgroups 6f.
(e) Describe all subgroups 6f in terms of (b) and (d).
(f) Verify that any twop-subgroups of7 are conjugatép prime).

56. Let GG act transitively on a seX. Let N be a normal subgroup @f, and letY” be the
set of orbits of NV in X. Prove that:
(&) There is a natural action 6f on Y which is transitive and shows that every orbit of
N on X has the same cardinality.
(b) Show by example that iV is not normal then its orbits need not have the same
cardinality.

57. Prove that every maximal subgroup of a finitgroup is normal of prime indefp is
prime).

58. A group( is metacyclidf it has a cyclic normal subgrouly’ with cyclic quotientG /N .
Prove that subgroups and quotient groups of metacyclic groups are metacyclic. Prove or
disprove that direct products of metacyclic groups are metacylic.

59. Let G be a group acting doubly transitively on, and letx € X. Prove that:
(a) The stabilizet7, of x is a maximal subgroup a¥.
(b) If N is anormal subgroup a@¥, then eithetV is contained irG,, or it acts transitively
onX.

60. Let x, y be elements of a grou@ such thatryxz=! = ¢°,  has ordeB, andy # 1 has
odd order. Find (with proof) the order gf

61. Let H be a maximal subgroup @f, and letA be a normal subgroup af and such
that the conjugates of in G generate it.
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(a) Prove that ifV is a normal subgroup aF, then eithetNV € H or G = N A.
(b) Let M be the intersection of the conjugatestin GG. Prove that ifG is equal to its
commutator subgroup andlis abelian, therd- /M is a simple group.

62. (a) Prove that the center of a nonabelian group of opdlgs prime, has ordep.
(b) Exhibit a nonabelian group of ordés whose center is not cyclic.

63. Show that the group with generatarsaand 5 and defining relations
o’ == (af)’ =1

is isomorphic with the symmetric grougy of degree3 by giving, with proof, an explicit
isomorphism.

64. Prove or give a counter-example:
(a) Every group of orde30 has a normal subgroup of ordks.
(b) Every group of orde30 is nilpotent.

65. Lett € Z, and letG be the group with generators y and relationseyz—! = 4,
% =1.

(&) Find necessary and sufficient conditions dor GG to be finite.

(b) In case is finite, determine its order.

66. Let G be a group of ordepq, p # ¢ primes.
(a) ProveG is solvable.
(b) Prove that7 is nilpotent <= G is abelian<—= G is cyclic.
(c) IsG always nilpotent? (Prove or find a counterexample.)

67.Let X be a set withp™ elementsp prime, and letG be a finite group acting transitively
on X. Prove that every Sylow-subgroup of acts transitively onX.

68.LetG = (a,b,c | bc = cb,a* =0? = > = 1, aca™" = ¢, aba™ = bc). Determine the
order of G and find the derived series 6f.

69. Let V be a nontrivial normal subgroup of a nilpotent grasipProve thatV N Z(G) #
1.

70. Do not assume Sylow’s theorems in this problem.
(a) LetH be a subgroup of a finite group, and P a Sylowp-subgroup of7. Prove that
there exists am € G such thatrPx~! N H is a Sylowp-subgroup offi.

1 x ...
(b) Prove that the group of x n matrices( ° ! - ) is a Sylowp-subgroup ofGL,,(F,).

0 1
(c) Indicate how (a) and (b) can be used to prove that any finite group has a Bylow
subgroup.

71. Supposé is a normal subgroup of a finite grodp such thatz/H is cyclic of order
n, wheren is relatively prime to(G : 1). Prove that5 is equal to the semi-direct product
H x S with S a cyclic subgroup of7 of ordern.

72. Let H be a minimal normal subgroup of a finite solvable graiip Prove thatH is
isomorphic to a direct sum of cyclic groups of orgiefior some primep.
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73. (a) Prove that subgroup$ and B of a groupG are of finite index inG if and only if
AN Biis of finite index inG.

(b) An elementz of a groupG is said to be afrC-elementf its centralizerC(z) has finite
index inG. Prove that the set of al'C' elements inG is a normal.

74. Let G be a group of ordep?q? for primesp > ¢. Prove thati has a normal subgroup
of orderp™ for somen > 1.

75.(a) LetK be afinite nilpotent group, and létbe a subgroup ok such thatl.-6 K = K,
whered K is the derived subgroup. Prove that= K. [You may assume that a finite group
is nilpotent if and only if every maximal subgroup is normal.]

(b) Let G be a finite group. IfG has a subgrougf such that bothz/dH and H are
nilpotent, prove thas is nilpotent.

76. Let GG be a finite noncycligp-group. Prove that the following are equivalent:
(a) (G : Z(G)) < p.
(b) Every maximal subgroup @f is abelian.
(c) There exist at least two maximal subgroups that are abelian.

77. Prove that every group: of order56 can be written (nontrivially) as a semidirect
product. Find (with proofs) two non-isomorphic non-abelian groups of diéler

78. Let GG be afinite group angb : G — G a homomorphism.
(a) Prove thatthereis aninteger> 0 such thaty"(G) = ¢™(G) for allintegersn > n.
Leta = ™.
(b) Prove thati is the semi-direct product of the subgroups v andIm «.
(c) Prove thalm « is normal inGG or give a counterexample.

79. Let S be a set of representatives for the conjugacy classes in a finite grang letH
be a subgroup of/. ShowthatS c H — H =G.

80. Let G be a finite group.
(@) Prove that there is a unique normal subgréupf G such that (i)G/ K is solvable
and (i) if V is a normal subgroup ar@/N is solvable, thernV D K.
(b) Show thatK is characteristic.
(c) Prove thatX = [K, K] and thatX’ = 1 or K is nonsolvable.
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C Two-Hour Examination

1. Which of the following statements are true (glmeef justifications for each of (a), (b),
(c), (d); give a correct set of implications for (e)).

(@) If @ andb are elements of a group, theh=1, =1 = (ab)® = 1.

(b) The following two elements are conjugateSs

1234567 1234567
34567 21)° 23156 74)
(c) If G andH are finite groups an@ x Asgy =~ H X Asgy, thenG ~ H.

(d) The only subgroup afi; containing(123) is As itself.
(e) Nilpotent = cyclic =— commutative—>- solvable (for a finite group).

2. How many Sylowl1-subgroups can a group of order0 = 2 - 5 - 11 have? Classify
the groups of ordetr10 containing a subgroup of order 10. Must every group of order 110
contain a subgroup of order 10?

3. Let G be afinite nilpotent group. Show that if every commutative quotiefit of cyclic,
then( itself is cyclic. Is the statement true for nonnilpotent groups?

4. (a) LetG be a subgroup ddym(.X), whereX is a set withn elements. IfG is commu-
tative and acts transitively oii, show that each element£ 1 of G moves every element
of X. Deduce thatG : 1) < n.

(b) For eachn > 1, find a commutative subgroup 6%,, of order3™.

(c) Show that a commutative subgroup$fhas order< 35.

5. Let H be a normal subgroup of a grodp) and letP be a subgroup off. Assume that
every automorphism aoff is inner. Prove that: = H - Ng(P).

6. (a) Describe the group with generatarandy and defining relatiogyzy ! = 27!

(b) Describe the group with generatorsand y and defining relationgzy—! = 271,
-1 -1

TYyr— =y .

You may use results proved in class or in the notes, but you should indicate clearly what
you are using.
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Solutions

1. (a) False: in(a, b|a?, b*), ab has infinite order.
(b) True, the cycle decompositions are (1357)(246), (123)(4567).
(c) True, use the Krull-Schmidt theorem.
(d) False, the group it generates is proper.
(e) Cyclic = commutative=—> nilpotent =—- solvable.

2. The number of Sylowt 1-subgroups;; = 1,12, ... and dividesl0. Hence there is only
one Sylowl1-subgroupP. Have

G:PNQH, PZCll7 H:CwOI’D5.

Now have to look at the mags: H — Aut(Cy;) = Cyo. Yes, by the Schur-Zassenhaus
lemma.

3. Supposé€ has class- 1. ThenG has quotient{ of class2. Consider
11— Z(H)— H— H/Z(H) — 1.

Then H is commutative by (4.17), which is a contradiction. TherefGress commutative,
and hence cyclic.

Alternatively, by induction, which shows th&t/Z(G) is cyclic.

No! In fact, it's not even true for solvable groups (e &;).

4. (a) If gr = z, thenghx = hgxr = hx. Henceg fixes every element ok, and sog = 1.
Fixanz € X; theng — gz : G — X is injective. [Note that Cayley’s theorem gives an
embeddings — S,,n = (G :1).]

(b) Partition the set into subsets of ordeand letG = G; x --- x G,,.

(c) LetOy, ..., O, be the orbits of+, and letGG; be the image of7 in Sym(O;). Then
G — Gy x --- x G,, and so (by induction),

(G:l)§(Gl:1)---(G,.:1)§3n:71...3%:3f,

|3

5. Letg € GG, and leth € H be such that conjugation byon H agrees with conjugation
by g. ThengPg~! = hPh~!, and soh~tg € Ng(P).

6. (a) It's the group .
G = () ¥ (y) = Cx Xg Cy
with 6: C,, — Aut(C,,) = £1. Alternatively, the elements can be written uniquely in the
form ziy’, 4,5 € Z, andyz = 2~ 1y.
(b) It's the quaternion group. From the two relations get

yr=x""y, yr=ay"

and sar? = y%. The second relation implies

wylr T =yt =y
and soy* = 1.
Alternatively, the Todd-Coxeter algorithm shows that it is the subgroufs generated
by (1287)(3465) and(1584)(2673).
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semidirect| 29

guotient groups
of a normal serie$, 61

rank

of a free groug, 18
reduced form, 16
relations[ 1B

defining[18

semigroup] 4
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generated by,|7
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subset
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Cayley[10
centre of g-group] 41
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Feit-Thompsor, G4
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